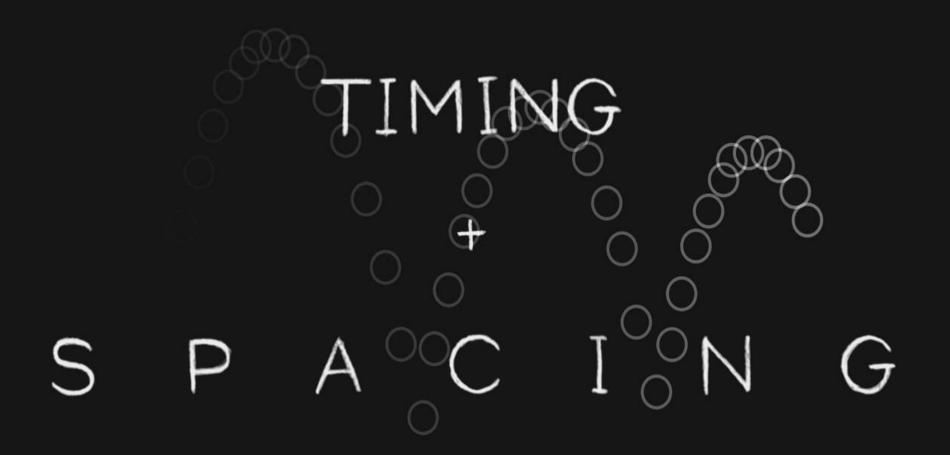
Computer Animation

Shih-Chin Weng shihchih.weng@gmail.com

Animation

shape = f(time)



TED-Ed: Animation basics: The art of timing and spacing

12 principles of animation by aCreativeAgency

Animation Principles

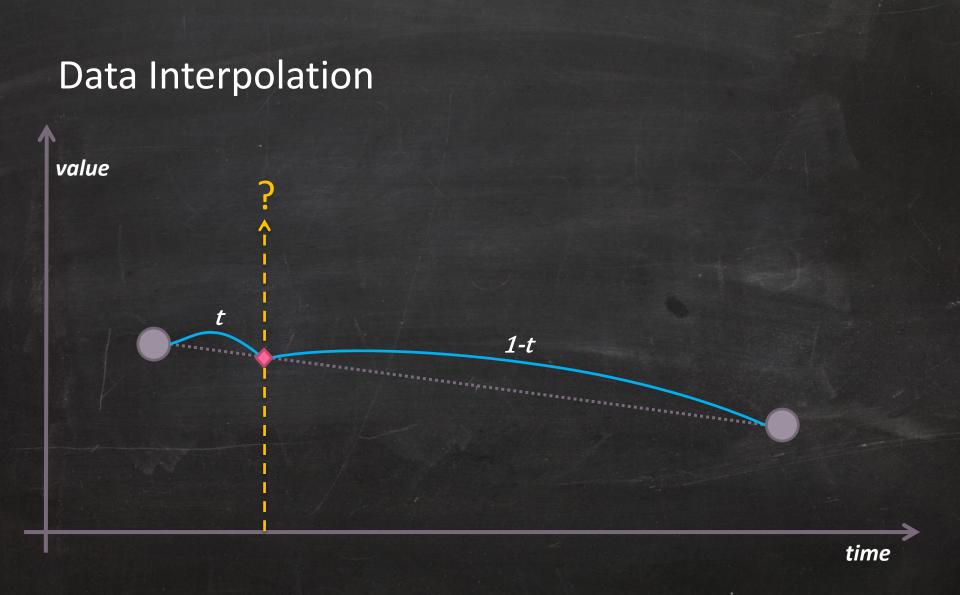
- 1. Squash & Stretch
- 2. Anticipation
- 3. Arcs
- 4. Ease In & Ease Out
- 5. Appeal
- 6. Timing

7. Solid Drawing 8. Exaggeration 9. Pose To Pose <u>10. Staging</u> 11. Secondary Motion 12. Following Through

https://en.wikipedia.org/wiki/12_basic_principles_of_animation

Key-frame Animation

- Animator specifies key-frames, software generate the frames in-between
 - Interpolation is the major operation in
 - time-variant transformations
 - pose-to-pose deformation
- Many animation principles can be modeled from physical law
 - Ex. Squash & stretch, following through, etc.



Data Interpolation - Cubic Bezier

value

Constructing curves using repeated linear interpolation @Pixar In a Box

Interpolation with Parametric Curves

- Cubic Bezier
 - 4 positions
- Catmull-Rom
 - 2 positions, 2 tangents (derived from nearby CVs)
- Hermit Curve
 - 2 (position + tangent)
 - tangents are specified at each CV

Considerations

Local control

- Each CV only affects neighboring segments
- That's why we need splines
- Smoothness, degree of continuity
 - $-C^0$: matches position
 - $-C^1$: matches tangent
 - $-C^2$: matches curvature

Cartesian Unit Vectors

- $\hat{\imath}, \hat{\jmath}, \hat{k}$
 - Coordinate axes
 - Orthonormal
 - Can be drawn at any location, not just at origin
 - Invariant at different locations
- Vector components
 - Projections of the vector onto the coordinate axes

René Descartes (1596-1650)

Change Axes in Cartesian Coordinate

Geometric information = coordinates + unit basis
 – Coordinates are meaningless without unit basis

(x, y, z)

- $\vec{r} = \text{displacement vector}$
- $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$

Change Axes in Cartesian Coordinate

- Geometric information = coordinates + unit basis
 Coordinates are meaningless without unit basis
- $\vec{r} = \text{displacement vector}$
- $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ = $x'\hat{\imath}' + y'\hat{\jmath}' + z'\hat{k}'$

 \vec{r} is fixed! But its components change!

Two Types of Transformations

- Coordinate-system transformations
 - Transform basis vector
 - Vector is the same, but components change

World-View-Projection transformation in rendering pipeline

Transform vector in the same coordinate
 Vector is different from original one

T

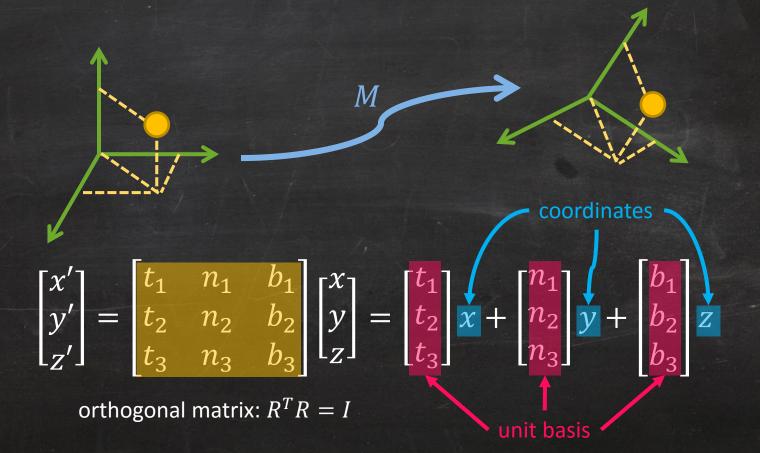
Animation in certain reference frame (ex. world space)

Orientation = Rotation

 $\begin{bmatrix} x'\\y'\\z' \end{bmatrix} = \begin{bmatrix} t_1 & n_1 & b_1\\t_2 & n_2 & b_2\\t_3 & n_3 & b_3 \end{bmatrix} \begin{bmatrix} x\\y\\z \end{bmatrix}$

M

Orientation = Rotation



Group

A family of transformations forms a group

 A set G together with a binary operation • defined on elements of G is called a group, if it satisfies the axioms of *closure, identity, inverse and associativity*

Group (Cont'd)

Closure $g_1, g_2 \in G \rightarrow g_1 \circ g_2 \in G$ Identity $\exists e \in G: g \circ e = e \circ g = g$ Inverse $\forall g \exists g^{-1} \in G: g \circ g^{-1} = g^{-1} \circ g = e$ Associativity $g_1, g_2, g_3 \in G,$ $g_1 \circ (g_2 \circ g_3) = (g_1 \circ g_2) \circ g_3$

Two Special Groups in 3D

- SO: Special Orthogonal group
 - $SO(3) = \{R \in \mathbb{R}^{3 \times 3} : RR^{T} = I, det R = +1\}$
 - 3D rotations centered at the origin
- SE: Special Euclidean Group
 - $SE(3) = \{(p, R) : p \in \mathbb{R}^3, R \in SO(3)\} = \mathbb{R}^3 \times SO(3)$
 - 3D rotations + translations
 - Rigid motion => preserve distance and orientation

Interpolating Rotation Matrices

$0.5\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + 0.5\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 90°CW around z-axis 90°CCW around z-axis

Interpolating Rotation Matrices

$0.5\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + 0.5\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 90°CW around z-axis

Oops!! This is NOT a rotation matrix!! Rotation matrix is a group with multiplication NOT addition

Representations of Rotations

- Rotation matrix
- Axis-angle
- Euler Angle
- Quaternion
- and many more...

http://rotations.berkeley.edu

After seeing this site, I just realized I didn't know much about rotations at all...

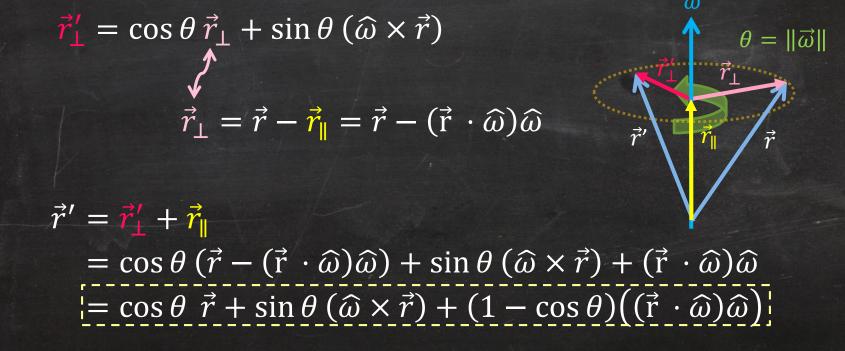
Euler's Rotation Theorem

 In 3D space, any sequence of rotations about a fixed point is equivalent to a single rotation by a given angle θ about a fixed axis

Leonhard Euler (1707-1783)

Axis-Angle

• Specify rotation axis $\widehat{\omega}$, and rotation angle $\|\overrightarrow{\omega}\|$



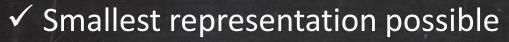
Euler's Rotation Theorem (in 3D Space)

 Any two orthonormal coordinate frames can be related by a sequence of rotations (not more than three) about coordinate axes

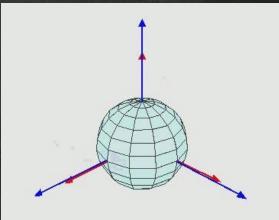
 Any two Cartesian coordinate systems with a common origin are related by a rotation about some fixed axis

Euler Angle

- $R(\alpha,\beta,\gamma) = R_z(\gamma)R_y(\beta)R_x(\alpha)$
 - Product of 3 rotations around local axes
 - Rotation order is important!
 - Ex. XYZ, ZXY, YZX, etc.
- ✓ Intuitive control



- × Non-unique representation for a given orientation
- × Hard to interpolate
- × Gimbal lock



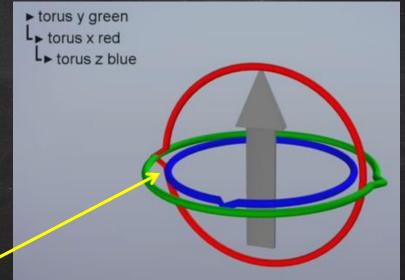
Degree of Freedom (DOF)

- A variable describing a particular axis or dimension of movement
 - 3D Rotation: 3DOFs
 - Axis-angle: axis θ , ϕ and rotation radius α
 - Euler angle: α , β , γ
 - Rigid body transformation in 3D: 6 DOFs
 - 3 for translation and 3 for rotation

Gimbal Lock

- When the second rotation value is $\pm \pi/2$, one degree of freedom (DOF) would be lost
- Can we use any specific rotation order to avoid this?
 – Not possible!! ^(S)

z-axis is aligned with y-axis!! ~



Video: Euler (gimbal lock) Explained by The Guerrilla CG Project

Singularity

- A continuous subspace of the parameter space, where
 - all elements correspond to the same rotation
 - any movement within the subspace produces no change in rotation
 - **NEVER** be eliminated in any 3-dimensional representation of SO(3)
 - That's why do we need quaternion!

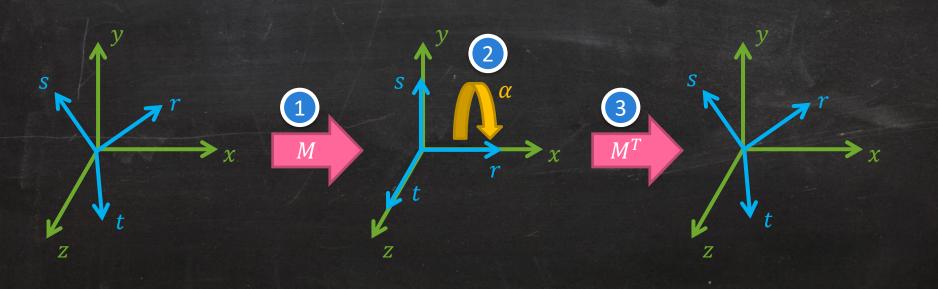
Singularity

When you go east at the **North Pole**, you are still at the same position!!

- A continuous subspace of the parameter space, where
 - all elements correspond to the same rotation
 - any movement within the subspace produces no change in rotation
 - **NEVER** be eliminated in any 3-dimensional representation of SO(3)
 - That's why do we need quaternion!

Rotate About an Arbitrary Axis

- 1. Change to new frame
- 2. Rotate α radians around
- 3. Transform back to standard basis



2D Rotation in Complex Plane

(0,1)

 $(\cos\theta, \sin\theta)$

 $(x' + y'i) = e^{i\theta}(x + yi)$ (0,1)where $e^{i\theta} = \cos\theta + i\sin\theta$ $(-\sin\theta, \cos\theta)$

 $\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$

2D Rotation in Complex Plane

 $(x' + y'i) = e^{i\theta}(x + yi)$ (0,1)where $e^{i\theta} = \cos\theta + i\sin\theta$ $(-\sin\theta, \cos\theta)$

 $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

Is it possible to extend this concept to 3D?

(0,1)

 $(\cos\theta, \sin\theta)$

Quaternion

Extend complex number to 3D •

$$k^{2} = j^{2} = k^{2} = ijk = -1$$

 $ij = k, \quad jk = i, \quad ki = j$
 $ji = -k, \quad kj = -i, \quad ik = -j$

William Rowan Hamilton (1805–1865)

Quaternion

• Can be represented in several ways:

$$q = (w, x, y, z)$$

$$q = w + xi + yj + zk$$

$$q = w + v$$

$$scalar part vector part$$

Quaternion

Hamilton product

 $q_{0} * q_{1} = (w_{0} + x_{0}i + y_{0}j + z_{0}k) * (w_{1} + x_{1}i + y_{1}j + z_{1}k)$ $= w_{0}w_{1} - x_{0}x_{1} - y_{0}y_{1} - z_{0}z_{1}$ $+ (w_{0}x_{1} + x_{0}w_{1} + y_{0}z_{1} - z_{0}y_{1})i$ $+ (w_{0}y_{1} + y_{0}w_{1} - x_{0}z_{1} + z_{0}x_{1})j$ $+ (w_{0}z_{1} + z_{0}w_{1} + x_{0}y_{1} - y_{0}x_{1})k$

 $i^2 = j^2 = k^2 = ijk = -1$

ij = k, jk = i, ki = jji = -k, kj = -i, ik = -j

Quaternion

Hamilton product

 $q_{0} * q_{1} = (w_{0} + x_{0}i + y_{0}j + z_{0}k) * (w_{1} + x_{1}i + y_{1}j + z_{1}k)$ $= w_{0}w_{1} - x_{0}x_{1} - y_{0}y_{1} - z_{0}z_{1}$ $+ (w_{0}x_{1} + x_{0}w_{1} + y_{0}z_{1} - z_{0}y_{1})i$ $+ (w_{0}y_{1} + y_{0}w_{1} - x_{0}z_{1} + z_{0}x_{1})j$ $+ (w_{0}z_{1} + z_{0}w_{1} + x_{0}y_{1} - y_{0}x_{1})k$ $= w_{0}w_{1} - v_{0} \cdot v_{1} + w_{0}v_{1} + w_{1}v_{0} + v_{0} \times v_{1}$

 $i^2 = j^2 = k^2 = ijk = -1$

ij = k, jk = i, ki = jji = -k, kj = -i, ik = -j

Quaternion

Hamilton product

 $q_0 * q_1 = (w_0 + x_0i + y_0j + z_0k) * (w_1 + x_1i + y_1j + z_1k)$ $= w_0 w_1 - x_0 x_1 - y_0 y_1 - z_0 z_1$ $+(w_0x_1 + x_0w_1 + y_0z_1 - z_0y_1)i$ $+(w_0y_1 + y_0w_1 - x_0z_1 + z_0x_1)j$ $+(w_0z_1 + z_0w_1 + x_0y_1 - y_0x_1)k$ $= w_0 w_1 - v_0 \cdot v_1 + w_0 v_1 + w_1 v_0 + v_0 \times v_1$ non-commutative!

 $i^2 = j^2 = k^2 = ijk = -1$

ij = k, jk = i, ki = j

ji = -k, kj = -i, ik = -j

Quaternion (Cont'd)

- Identity: $\mathbf{q} = (1, 0, 0, 0)^{\mathrm{T}}$
- Conjugate: $q^* = (w, -v)$
 - $(q^*)^* = q$
 - $(pq)^* = q^*p^*$
 - $(p+q)^* = p^* + q^*$
- $q_0 + q_1 = (w_0 + w_1, v_0 + v_1)$
- $\alpha q = q\alpha = (\alpha w, \alpha v)$

Quaternion (Cont'd)

- Norm: $N(q) = qq^* = q^*q = w^2 + x^2 + y^2 + z^2$
 - $N(q_0q_1) = N(q_0)N(q_1)$
 - $N(q^*) = N(q)$
- Inverse: $q^{-1} = \frac{q^*}{N(q)}$
 - $\mathbf{q} \circ \mathbf{q}^{-1} = \mathbf{q}^{-1} \circ \mathbf{q} = (1, 0, 0, 0)^{\mathrm{T}}$
 - $(q_0q_1)^{-1} = q_1^{-1}q_0^{-1}$
- Difference: $\mathbf{q}_0 \mathbf{q}_d = \mathbf{q}_1 \Rightarrow \mathbf{q}_d = \mathbf{q}_0^{-1} \mathbf{q}_1$

Unit Quaternion

$$\mathbf{q} = (w, x, y, z)^T = \left[\cos\left(\frac{\theta}{2}\right), \sin\left(\frac{\theta}{2}\right) \mathbf{\hat{v}} \right]^T$$

Ŷ

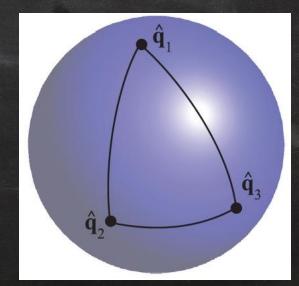
Unit Quaternion

$$\mathbf{q} = (\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z})^T = \begin{bmatrix} \cos\left(\frac{\theta}{2}\right), \sin\left(\frac{\theta}{2}\right) \mathbf{\hat{v}} \end{bmatrix}^T$$
$$why \frac{1}{2} ???$$

Ŷ

Rotation with Quaternion

- $\mathbf{p}' = \operatorname{Rotate}(\mathbf{p}) = \mathbf{q} \circ \tilde{p} \circ \mathbf{q}^{-1}$
 - Rotate a vector $\mathbf{p} \in \mathbb{R}^3$ by an unit quaternion $\mathbf{q} \in \mathcal{S}^3$
 - $\tilde{p} = (0, p)^{T}$ extended with a zero scalar component
 - Rotate() function would strips off
 the scalar part of quaternion



Quaternion – Why $\theta/2$??

Recall: $q_0q_1 = w_0w_1 - v_0 \cdot v_1 + w_0v_1 + w_1v_0 + v_0 \times v_1$ $qpq^{-1} = (w + t\hat{v})\vec{p}(w + t\hat{v})^{-1}$ $= (-t\hat{v} \cdot \vec{p} + w\vec{p} + t\hat{v} \times \vec{p})(w - t\hat{v})$ $= -wt\hat{v}\cdot\vec{p} + (w\vec{p} + t\hat{v}\times\vec{p})\cdot t\hat{v} + w(w\vec{p} + t\hat{v}\times\vec{p})$ $+(t\hat{v}\cdot\vec{p})t\hat{v}-(w\vec{p}+t\hat{v}\times\vec{p})\times t\hat{v}$ $= w^2 \vec{p} + 2wt \hat{v} \times \vec{p} + t^2 (\hat{v} \cdot \vec{p}) \hat{v} - t^2 \hat{v} \times \vec{p} \times \hat{v}$ $= (w^2 - t^2)\vec{p} + 2wt\hat{v} \times \vec{p} + 2t^2(\vec{p} \cdot \hat{v})\hat{v}$

Quaternion – Why $\theta/2$??

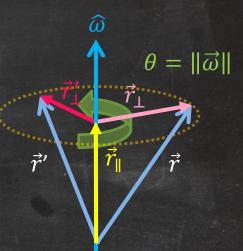
Recall: $q_0q_1 = w_0w_1 - v_0 \cdot v_1 + w_0v_1 + w_1v_0 + v_0 \times v_1$ $qpq^{-1} = (w + t\hat{v})\vec{p}(w + t\hat{v})^{-1}$ $= (-t\hat{v} \cdot \vec{p} + w\vec{p} + t\hat{v} \times \vec{p})(w - t\hat{v})$ $= -wt\hat{v}\cdot\vec{p} + (w\vec{p} + t\hat{v}\times\vec{p})\cdot t\hat{v} + w(w\vec{p} + t\hat{v}\times\vec{p})$ $+(t\hat{v}\cdot\vec{p})t\hat{v}-(w\vec{p}+t\hat{v}\times\vec{p})\times t\hat{v}$ $= w^2 \vec{p} + 2wt \hat{v} \times \vec{p} + t^2 (\hat{v} \cdot \vec{p}) \hat{v} - t^2 \hat{v} \times \vec{p} \times \hat{v}$ $= (w^2 - t^2)\vec{p} + 2wt\hat{v} \times \vec{p} + 2t^2(\vec{p}\cdot\hat{v})\hat{v}$

Look familiar??

Axis-Angle Rotation

Recal

$\vec{r}' = \cos\theta \ \vec{r} + \sin\theta \ (\hat{\omega} \times \vec{r}) + (1 - \cos\theta) \big((\vec{r} \cdot \hat{\omega}) \hat{\omega} \big)$



Quaternion – Why $\theta/2$?? (Cont'd)

 $qpq^{-1} = (w + t\hat{v})\vec{p}(w + t\hat{v})^{-1}$ $= (-t\hat{v} \cdot \vec{p} + w\vec{p} + t\hat{v} \times \vec{p})(w - t\hat{v})$ $= -wt\hat{v}\cdot\vec{p} + (w\vec{p} + t\hat{v}\times\vec{p})\cdot t\hat{v} + w(w\vec{p} + t\hat{v}\times\vec{p})$ $+(t\hat{v}\cdot\vec{p})t\hat{v}-(w\vec{p}+t\hat{v}\times\vec{p})\times t\hat{v}$ $= w^2 \vec{p} + 2wt \hat{v} \times \vec{p} + t^2 (\hat{v} \cdot \vec{p}) \hat{v} - t^2 \hat{v} \times \vec{p} \times \hat{v}$ $= (w^2 - t^2)\vec{p} + 2wt\hat{v}\times\vec{p} + 2t^2(\vec{p}\cdot\hat{v})\hat{v}$ $\vec{r}' = \cos\theta \,\vec{r} + \sin\theta \,(\widehat{\omega} \times \vec{r}) + (1 - \cos\theta) \big((\vec{r} \cdot \widehat{\omega}) \widehat{\omega} \big)$

Quaternion – Why $\theta/2$?? (Cont'd)

$$w^{2} - t^{2} = \cos \theta$$

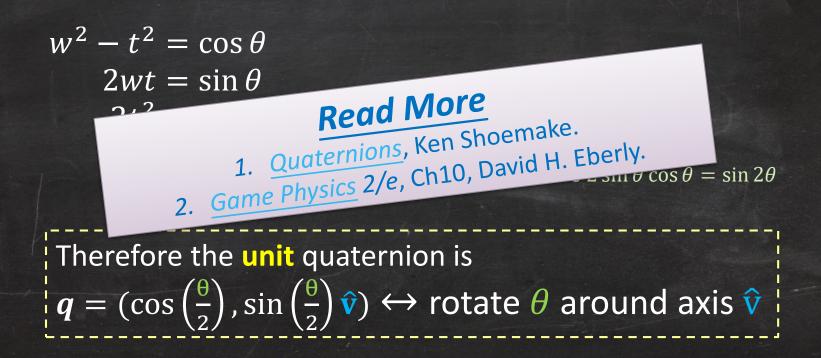
$$2wt = \sin \theta$$

$$2t^{2} = 1 - \cos \theta \implies t = \sin \frac{\theta}{2} \implies w = \cos \frac{\theta}{2}$$

where $2\sin\theta\cos\theta = \sin 2\theta$

Therefore the unit quaternion is $q = (\cos\left(\frac{\theta}{2}\right), \sin\left(\frac{\theta}{2}\right) \hat{\mathbf{v}}) \leftrightarrow \text{rotate } \boldsymbol{\theta} \text{ around axis } \hat{\mathbf{v}}$

Quaternion – Why $\theta/2$?? (Cont'd)

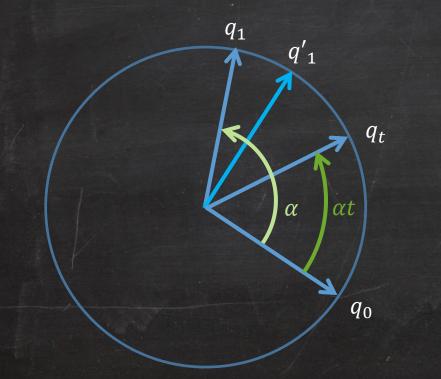


Quaternion qpq^{-1}

- Concatenation
 - $q_1 \cdot (q_0 \cdot p \cdot q_0^{-1}) \cdot q_1^{-1} = (q_1 \cdot q_0) \cdot p \cdot (q_1 \cdot q_0)^{-1}$
- Any non-zero real multiple of q gives the same action
 (sq)p(sq)⁻¹ = (sq)p(q⁻¹s⁻¹) = qpq⁻¹ss⁻¹ = qpq⁻¹

Its angular speed is **NOT** constant!

Quaternion – Spherical Linear Interpolation

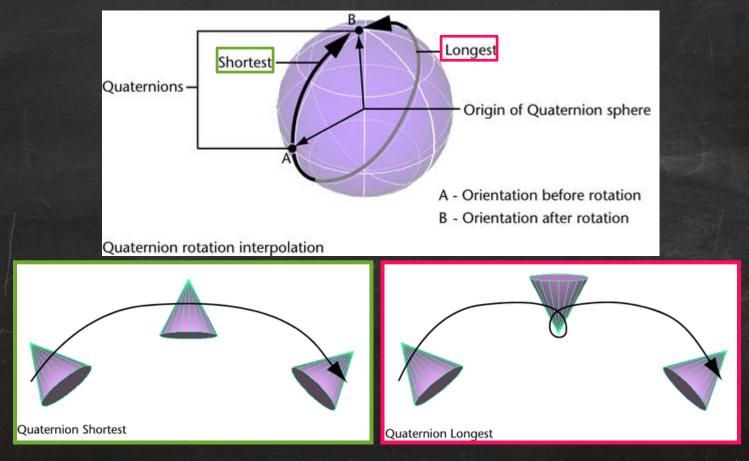


 $q_t = (\cos \alpha t)q_0 + (\sin \alpha t)q'_1$ $q'_1 = \frac{q_1 - \cos \alpha q_0}{\sin \alpha}$

 $q_t = \frac{\sin(1-t)\alpha}{\sin\alpha}q_0 + \frac{\sin\alpha t}{\sin\alpha}q_1$

Numerical error as lpha
ightarrow 0, use lerp instead!

Quaternion - Interpolation Path

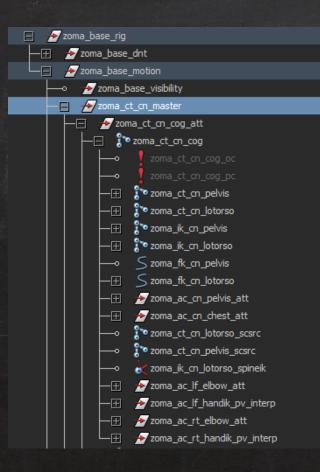


Why Quaternion?

- Smooth interpolation with slerp
- Without singularity (Gimbal Lock)
- Compact representation (only 4 numbers)
- Fast conversion from/to matrix representation
- Fast concatenation and inversion of angular displacements

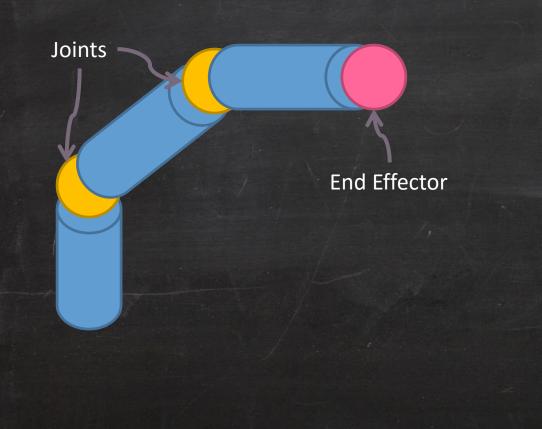
Character Animation

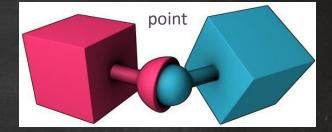
Skeleton

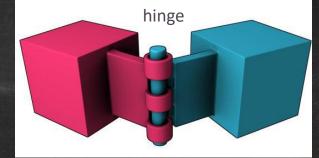


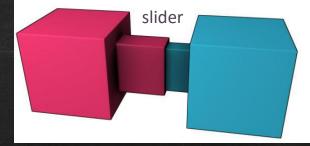
Hotel Transylvania / Zombie Rig from SONY Pictures Animation

Kinematic Chain









Bullet constraint types

Degree of Freedom (DOF)

- A variable describing a particular axis or dimension of movement within a joint
- Rigid body transformation
 - 6 DOFs

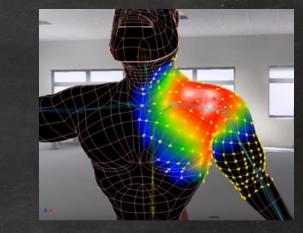
Deca

- 3 for position and 3 for rotation
- Pose: a vector of N numbers that maps to a set of DOFs in the skeleton

Forward Kinematics

Inverse Kinematics

Hotel Transylvania / Zombie Rig from SONY Pictures Animation



Linear Blend Skinning (LBS)

m

 $v'_i =$

transformation of *joint j*

blending weights for *joint j* to *vertex i*

 $w_{i,j}T_jv_i$

Rigid binding: each vertex is only affected by one joint Smooth binding: each vertex is affected by multiple joints (< 4)

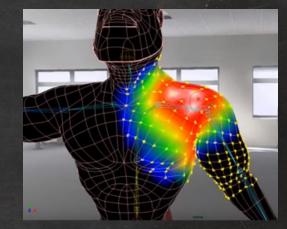
 $\langle w_{i,j}T_j \rangle$

Linear Blend Skinning (LBS)

m

 v'_i =

transformation of joint j



 $\sum_{j=1}^{m} w_{i,j} = 1,$ $0 \le w_{i,j} \le 1$

blending weights for *joint j* to *vertex i*

 $W_{i,i}$

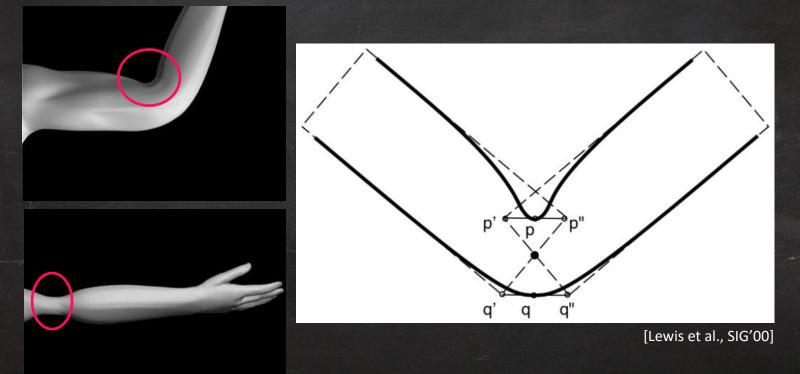
Bad smell, lerping matrices!?

Rigid binding: each vertex is only affected by one joint Smooth binding: each vertex is affected by multiple joints (< 4)

m

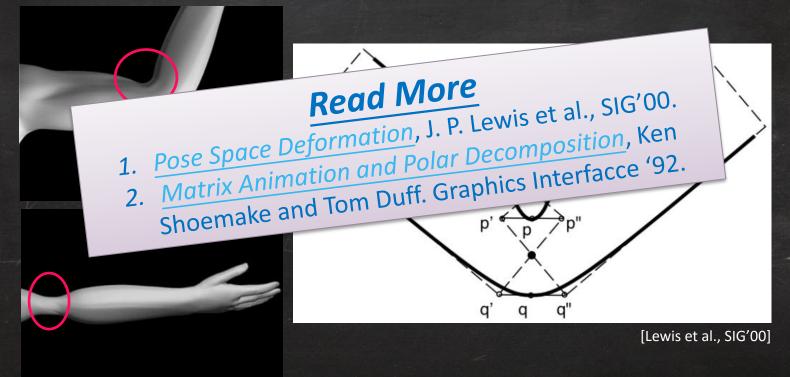
Direct Matrix Interpolation

Lerped rotation matrix is NOT a rotation matrix



Direct Matrix Interpolation

Lerped rotation matrix is NOT a rotation matrix



Discrete Laplace-Beltrami

 v_i

 v_i

Measures the difference between the value of the function at that point and the average of the values at surrounding points

$$L_{C}(v_{i}) = \frac{1}{2A(v_{i})} \sum_{v} \left(\cot \alpha_{ij} + \cot \beta_{ij}\right) (v_{j} - v_{i})$$

12;

 v_i

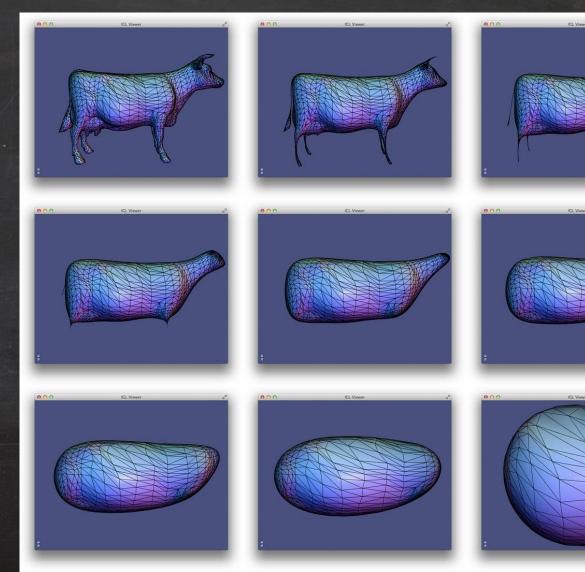
 α_{ij}

 \mathcal{V}_i

 v_i

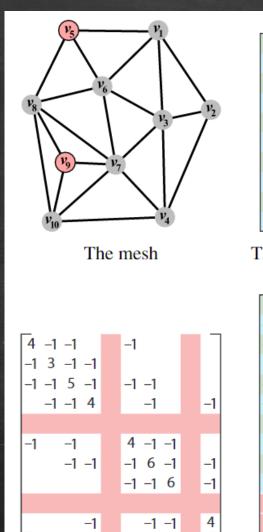
Mesh Smoothing

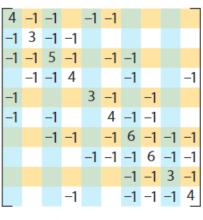
 $V' = L_C(V) + V$



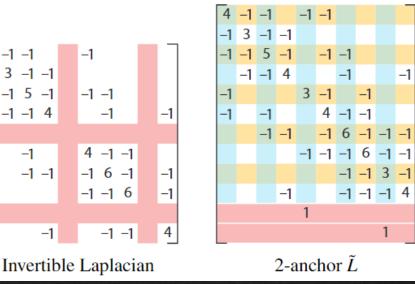
http://libigl.github.io/libigl/tutorial/tutorial.html

IGL Vie





The symmetric Laplacian L_s



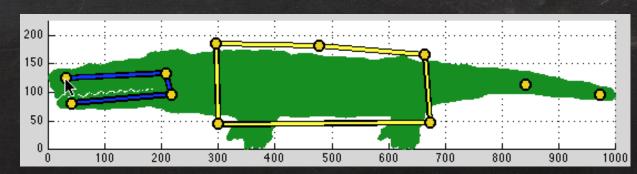
Deformation

shape = f(space)

shape = f(shape)

Deformer

- Change the position of vertices
 - Vertices in, vertices out
 - Topology is unchanged
- Users manipulate the shape via handles such as
 - curve
 - cage
 - proxy mesh
 - etc.



[Jacobson et al., SIG'11]

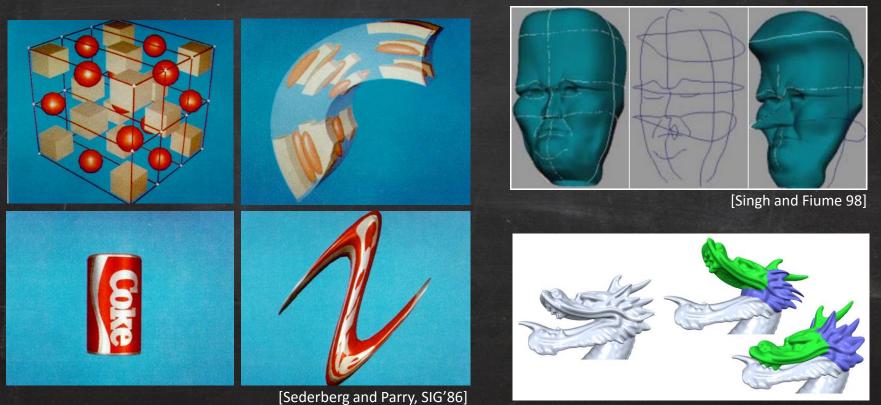
Why Deformer?

- Manipulate mesh for aesthetic purposes
 - Squash, stretch, collision, etc.
- Character posing for animation
- Fake dynamics
 - Secondary animation by using procedural
- Simulation post-fix?
 - I think it would be great for production

Deformer Requirements

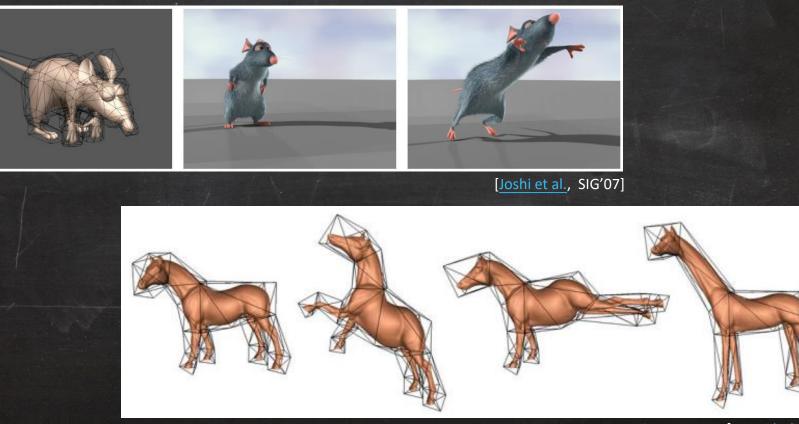
- Sufficiently fast & robust
- Easy to setup and control
- Aesthetically pleasing
 - Physically plausible
 - Preserve local details or volume
- Large scale deformation (optional)

Space Deformation: shape = f(space)



[Botsch and Kobbelt, EG'05]

Space Deformation: shape = f(space)



[Ju et al., SIG'05]

Coordinate Mapping

 $\bigcirc \chi$

 x_i

 How do we compute the weights inside? Ans.: <u>Generalized Barycentric Coordinates</u>

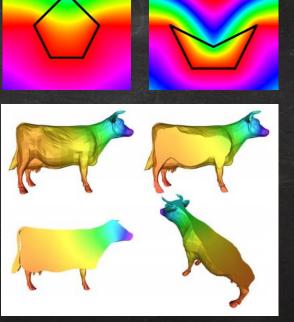
 f_i

$$g(x) = \sum_{i=1}^{n} w_i(x) f_i$$

deform

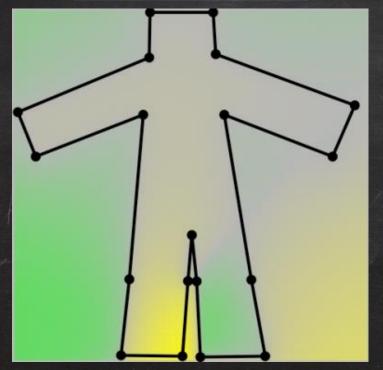
should be smooth!!

g(x)



Coordinate Mapping (Cont'd)

Mean Value Coordinate



Harmonic Coordinate

Coordinate Mapping (Cont'd)

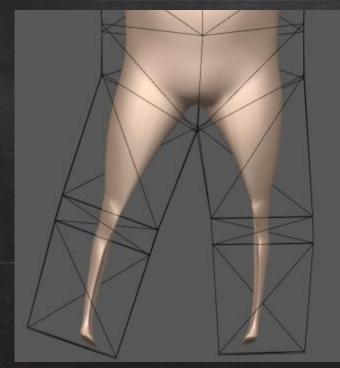
Mean Value Coordinate Harmonic Coordinate

negative weights!! •

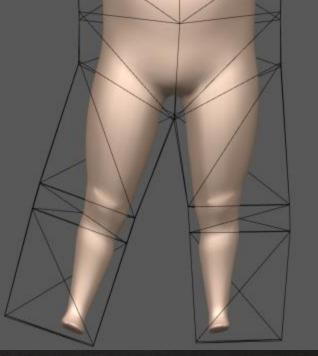
[Joshi et al., SIG'07]

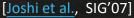
Coordinate Mapping (Cont'd)

Mean Value Coordinate

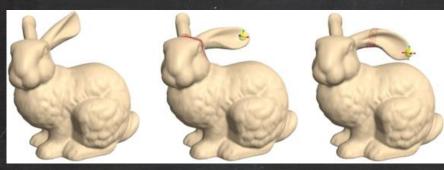


Harmonic Coordinate

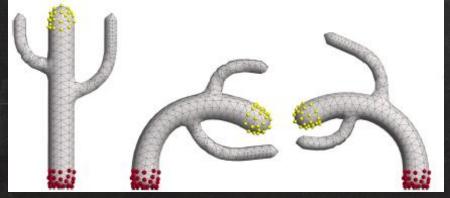




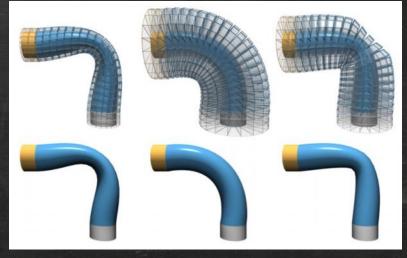
Surface Deformation: shape = f(shape)



[Sorkine et al., SGP'04]



[Sorkine and Alexa, SGP'07]



[Botsch et al., SGP'06]

General Framework of Surface Deformation

$x' = \arg \min_{x'} f(x')$ subject to $x'_i = c_i$

General Framework of Surface Deformation

objective (energy function)

subject to $x'_i = c_i$

equality constraints

Bi-Harmonic Deformation

$\begin{bmatrix} L_c^2 \\ 0 & \mathbf{I} & 0 \\ 0 & 0 & \mathbf{I} \end{bmatrix} \begin{bmatrix} \vdots \\ d_i \\ \vdots \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \delta h_i \end{bmatrix}$

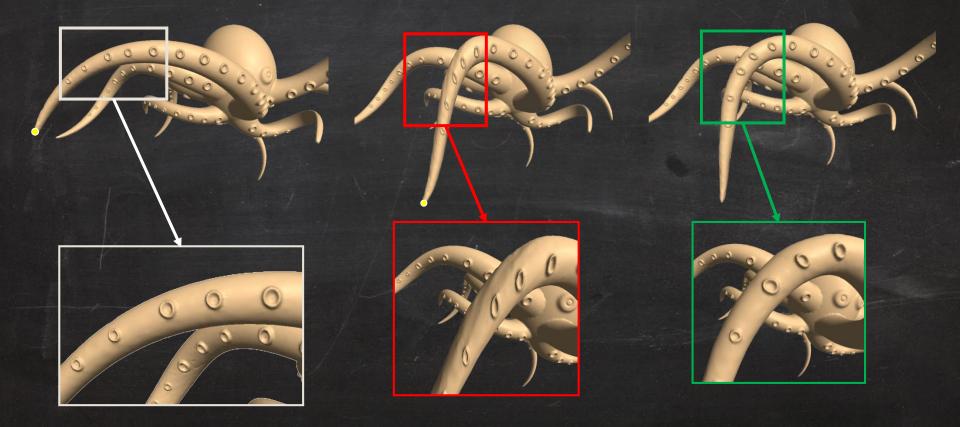
 $L_C^2 d = 0 -$

fixed area (constraints) d = 0

handle

 $d = \delta h$

Laplacian Surface Editing



[Sorkine et al., SGP'04]

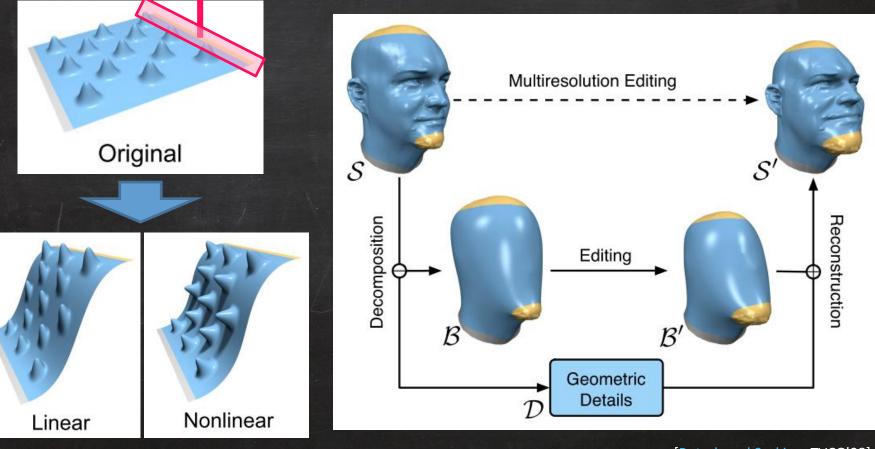
Laplacian Surface Editing (Cont'd)

$$v' = \arg\min_{v'} \left(\sum_{i=1}^{n} \|L_c(v'_i) - T_i L_c(v_i)\|^2 + \sum_{j \in C} \|v'_j - u_j\|^2 \right)$$

similarity transformation

Laplacian coordinate is not rotation invariant, thus we need T_i for alignment (rotation + scale). user constraints

Multiresolution Editing



Face Animation

Given a set of models for each facial expression
 – Each model has identical topology

How to tweak the expression via parameters?
 – PCA (Principal Component Analysis)
 – BlendShapes

BlendShape

$$f = b_0 + \sum_{k=1}^n w_k (b_k - b_0)$$
$$f = b_0 + Bw$$

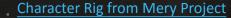
Character Rig from Mery Project

BlendShape

$$f = \mathbf{b_0}^n + \sum_{k=1}^n w_k (b_k - \mathbf{b_0})$$
$$f = b_0 + Bw$$

Character Rig from Mery Project

BlendShape



. . .

 $f = \frac{b_0}{b_0} + \sum_{k=1}^n w_k (\frac{b_k}{b_k} - \frac{b_0}{b_0})$

 $f = b_0 + Bw$

Comparison

PCA

- Orthogonal
- Lack the interpretability

BlendShape

- Semantic parameterization
- Consistent appearance
- Lack of orthogonality

• Not unique: $f = B(RR^{-1})w$

Facial Action Coding System (FACS)

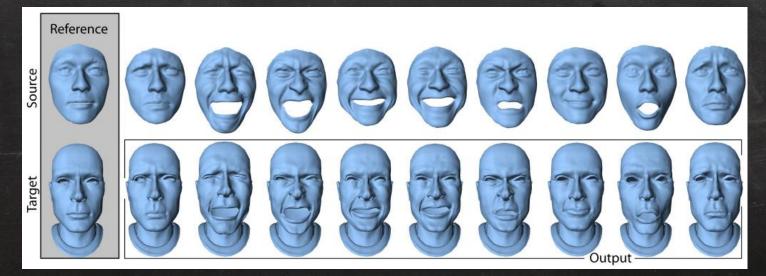
Latest Result: 30 High-Res Expressions Processed in One Week

USC Institute for Creative Technologies

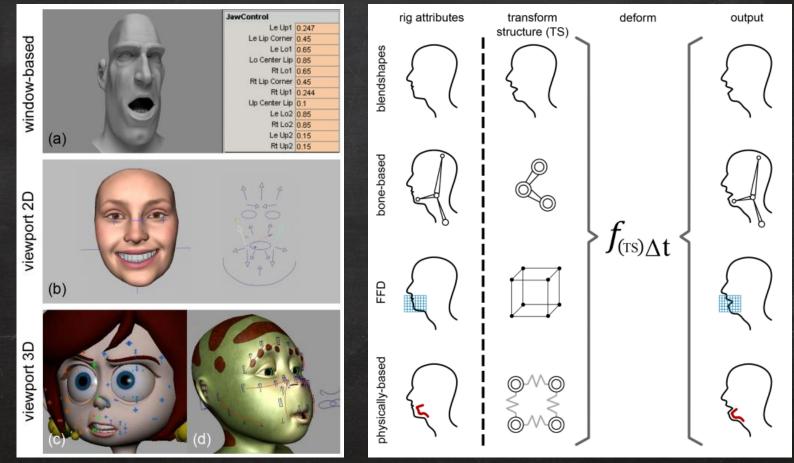
[The Art of Digital Faces at ICT – Digital Emily to Digital Ira, fxguide. 2013]

Practical Issues

- How to compress BlendShape data?
- Expression transfer between multiple characters
 - Use deformation transfer for BlendShape targets

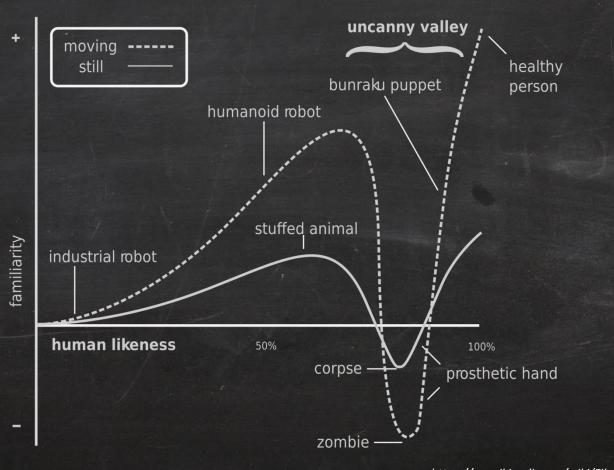


Facial Rigging



[Orvalho et al., EG'12]

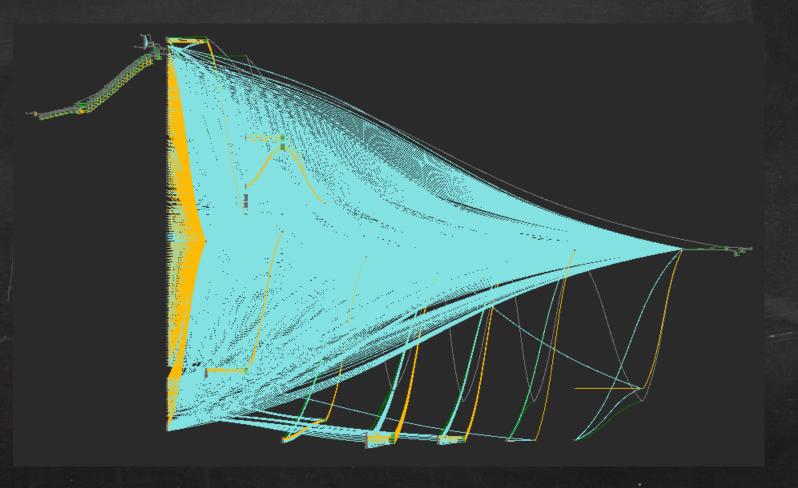
Uncanny Valley



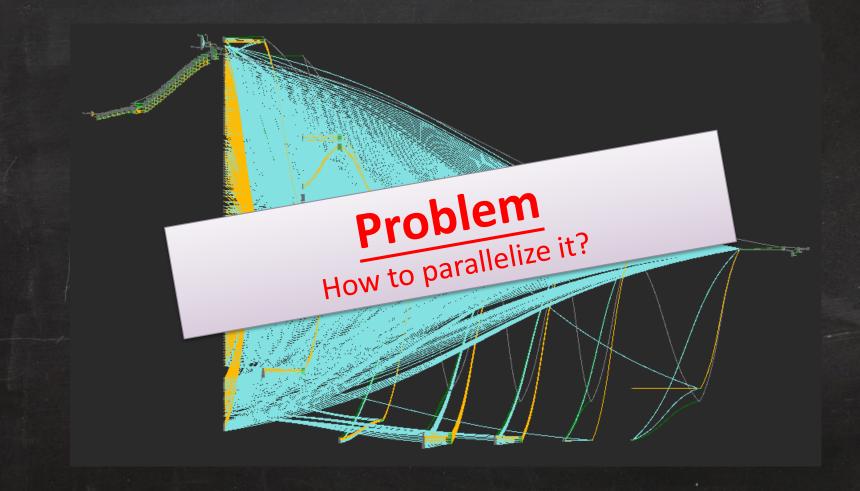
Practical Issues

- How to provide intuitive controls?
 - Too many => hard to manipulate
 - Not enough => can't get enough animation details
- In node-based framework, computation = graph evaluation
 - How do we separate the evaluation graph for parallelism?

Parallel Graph Evaluation



Parallel Graph Evaluation

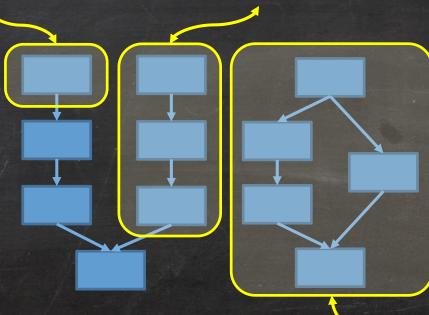


Parallel Graph Evaluation (Cont'd)

- Parallelization is NOT just about using TBB or CUDA
- Graph analysis is a key for performance gain
 - But the graph evaluation routine in Maya is a black box!!
- Numerical issue
 - Consistency between serial and parallel implementation
 - Due to rounding error and truncation of floating point
 - Deterministic algorithm?

Multi-threading in Node-Based Architecture

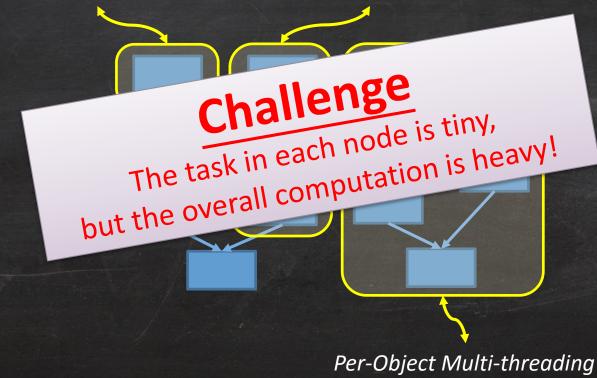
Per-Node Multi-threading Per-Branch Multi-threading



Per-Object Multi-threading

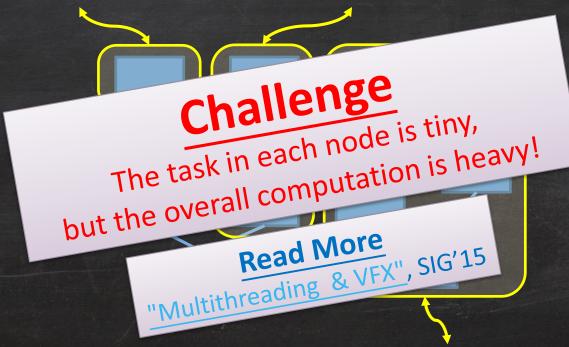
Multi-threading in Node-Based Architecture

Per-Node Multi-threading Per-Branch Multi-threading



Multi-threading in Node-Based Architecture

Per-Node Multi-threading Per-Branch Multi-threading



Per-Object Multi-threading

Physically Based Animation

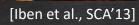
Cloth

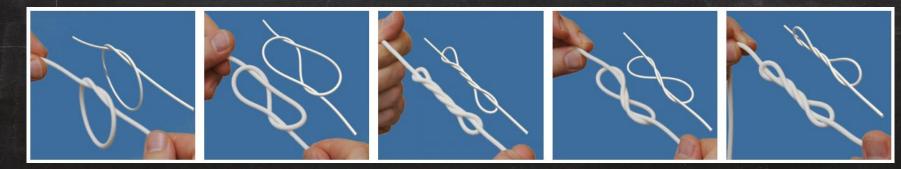
[Baraff and Witkin. SIG'98]

[Tamstorf et al., SIGA'15]

Hair

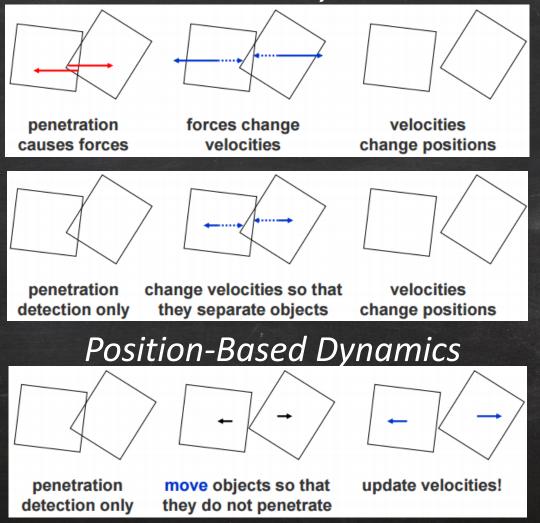
[Selle et al., SIG'08]





[Bergou et al., SIG'08]

Force-Based Dynamics



[Figures from Müller et al., "Position Based Dynamics", VRIPHYS'06]

Comparison

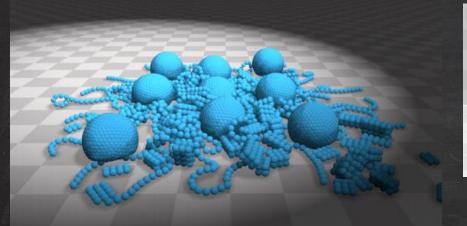
Force-Based

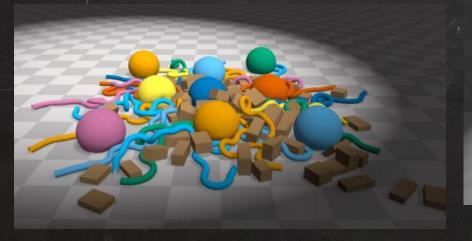
- ✓ Physically accurate
 - Newton second law
 - Navier-Stokes
 - ..., etc.
- Explicit integration
 - Not stable for stiff system
 - Overshooting
- Implicit integration
 - Computationally expensive
 - Numerical damping

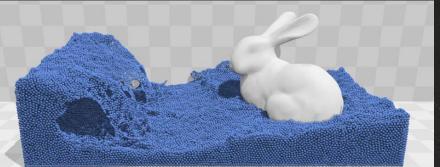
Position-Based ✓ Fast ✓ Unconditionally stable ✓ Controllable

- Less physically accurate
- Need to explore new ways to update velocity

Unified Particle Physics







[Macklin et al., SIG'14]

References

- Quaternions, Ken Shoemake.
- Understanding Rotations, Jim Van Verth.
- On Linear Variational Surface Deformation Methods, Mario Botsch, Olga Sorkine-Hornung.
- Skinning: Real-time Shape Deformation, SIG'14.
- Laplace-Beltrami: The Swiss Army Knife of Geometry Processing, SGP'14.