
Computer Animation

Shih-Chin Weng
shihchih.weng@gmail.com

𝑠ℎ𝑎𝑝𝑒 = 𝑓(𝑡𝑖𝑚𝑒)

Animation

TED-Ed: Animation basics: The art of timing and spacing

https://www.youtube.com/watch?v=KRVhtMxQWRs

12 principles of animation by aCreativeAgency

https://www.youtube.com/watch?v=GcryIdriSe4

Animation Principles

1. Squash & Stretch

2. Anticipation

3. Arcs

4. Ease In & Ease Out

5. Appeal

6. Timing

7. Solid Drawing

8. Exaggeration

9. Pose To Pose

10. Staging

11. Secondary Motion

12. Following Through

https://en.wikipedia.org/wiki/12_basic_principles_of_animation

https://en.wikipedia.org/wiki/12_basic_principles_of_animation

Key-frame Animation

• Animator specifies key-frames, software generate
the frames in-between

– Interpolation is the major operation in
• time-variant transformations

• pose-to-pose deformation

• Many animation principles can be modeled from
physical law

– Ex. Squash & stretch, following through, etc.

Data Interpolation

time

value

?

t
1-t

Data Interpolation - Cubic Bezier

time

value

?

Constructing curves using repeated linear interpolation @Pixar In a Box

https://www.khanacademy.org/partner-content/pixar/animate/parametric-curves/p/constructing-curves-using-repeated-linear-interpolation

Interpolation with Parametric Curves

• Cubic Bezier

– 4 positions

• Catmull-Rom

– 2 positions, 2 tangents (derived from nearby CVs)

• Hermit Curve

– 2 (position + tangent)
• tangents are specified at each CV

Considerations

• Local control

– Each CV only affects neighboring segments

– That’s why we need splines

• Smoothness, degree of continuity

– 𝐶0: matches position

– 𝐶1: matches tangent

– 𝐶2: matches curvature

Cartesian Unit Vectors

• Ƹ𝑖, Ƹ𝑗, ෠𝑘

– Coordinate axes

– Orthonormal

– Can be drawn at any location,
not just at origin
• Invariant at different locations

• Vector components

– Projections of the vector onto the coordinate axes

René Descartes (1596-1650)

Change Axes in Cartesian Coordinate

• Geometric information = coordinates + unit basis

– Coordinates are meaningless without unit basis

• Ԧ𝑟 = displacement vector

• Ԧ𝑟 = 𝑥 Ƹ𝑖 + 𝑦 Ƹ𝑗 + 𝑧෠𝑘 𝑥, 𝑦, 𝑧

Ƹ𝑖

Ƹ𝑗

෠𝑘

Ԧ𝑟

Change Axes in Cartesian Coordinate

• Geometric information = coordinates + unit basis

– Coordinates are meaningless without unit basis

• Ԧ𝑟 = displacement vector

• Ԧ𝑟 = 𝑥 Ƹ𝑖 + 𝑦 Ƹ𝑗 + 𝑧෠𝑘 𝑥, 𝑦, 𝑧

Ƹ𝑖

Ƹ𝑗

෠𝑘

Ƹ𝑗′

Ƹ𝑖′

෠𝑘′

Ԧ𝑟
(𝑥′, 𝑦′, 𝑧′)

= 𝑥′ Ƹ𝑖′ + 𝑦′ Ƹ𝑗′ + 𝑧′ ෠𝑘′

Ԧ𝑟 is fixed!
But its components change!

Two Types of Transformations

• Coordinate-system transformations

– Transform basis vector

– Vector is the same, but components change

• Transform vector in the same coordinate

– Vector is different from original one

Ԧ𝑟

Ԧ𝑟

World-View-Projection transformation in rendering pipeline

Animation in certain reference frame (ex. world space)

Orientation = Rotation

𝑥′
𝑦′

𝑧′

=

𝑡1 𝑛1 𝑏1
𝑡2 𝑛2 𝑏2
𝑡3 𝑛3 𝑏3

𝑥
𝑦
𝑧

𝑀

Orientation = Rotation

𝑥′
𝑦′

𝑧′

=

𝑡1 𝑛1 𝑏1
𝑡2 𝑛2 𝑏2
𝑡3 𝑛3 𝑏3

𝑥
𝑦
𝑧

=

𝑡1
𝑡2
𝑡3

𝑥 +

𝑛1
𝑛2
𝑛3

𝑦 +

𝑏1
𝑏2
𝑏3

𝑧

unit basis

coordinates

𝑀

orthogonal matrix: 𝑅𝑇𝑅 = 𝐼

Group

• A family of transformations forms a group

• A set G together with a binary operation ∘ defined on
elements of G is called a group, if it satisfies the
axioms of closure, identity, inverse and associativity

Introduction to Higher Mathematics - Lecture 16: Group Theory
SIG’14: Mathematical Basics of Motion and Deformation in Computer Graphics

https://www.youtube.com/watch?v=WwndchnEDS4
http://mcg.imi.kyushu-u.ac.jp/project.php?record_id=96

Group (Cont’d)

Closure
g1, g2 ∈ G → g1 ∘ g2 ∈ G

Identity
∃𝑒 ∈ 𝐺: 𝑔 ∘ e = e ∘ g = g

Inverse
∀g ∃g−1 ∈ G: g ∘ g−1 = g−1 ∘ g = e

Associativity
g1, g2, g3 ∈ G, g1 ∘ g2 ∘ g3 = g1 ∘ g2 ∘ g3

Two Special Groups in 3D

• SO: Special Orthogonal group

• SO 3 = R ∈ ℝ3×3 ∶ RRT= I, det 𝑅 = +1
• 3D rotations centered at the origin

• SE: Special Euclidean Group

• SE 3 = 𝑝, 𝑅 ∶ 𝑝 ∈ ℝ3, 𝑅 ∈ 𝑆𝑂(3) = ℝ3 × SO(3)
• 3D rotations + translations

• Rigid motion => preserve distance and orientation

Interpolating Rotation Matrices

0.5
0 1 0
−1 0 0
0 0 1

+ 0.5
0 −1 0
1 0 0
0 0 1

=
0 0 0
0 0 0
0 0 1

90∘CW around z-axis 90∘CCW around z-axis

Interpolating Rotation Matrices

0.5
0 1 0
−1 0 0
0 0 1

+ 0.5
0 −1 0
1 0 0
0 0 1

=
0 0 0
0 0 0
0 0 1

90∘CW around z-axis 90∘CCW around z-axis

?

Oops!! This is NOT a rotation matrix!!
Rotation matrix is a group with multiplication NOT addition

Representations of Rotations

• Rotation matrix

• Axis-angle

• Euler Angle

• Quaternion

• and many more… http://rotations.berkeley.edu

After seeing this site, I just realized I didn’t know much about rotations at all…

http://rotations.berkeley.edu/

Euler’s Rotation Theorem

• In 3D space, any sequence of
rotations about a fixed point is
equivalent to a single rotation
by a given angle 𝜃 about a
fixed axis

Euler's rotation theorem @Wikipedia

Leonhard Euler (1707-1783)

https://en.wikipedia.org/wiki/Euler's_rotation_theorem

Axis-Angle

• Specify rotation axis ෝ𝜔, and rotation angle 𝜔

ෝ𝜔

𝜃 = 𝜔

Ԧ𝑟Ԧ𝑟∥

Ԧ𝑟⊥Ԧ𝑟⊥
′

Ԧ𝑟′ = Ԧ𝑟⊥
′ + Ԧ𝑟∥

= cos 𝜃 Ԧ𝑟 − Ԧr ⋅ ෝ𝜔 ෝ𝜔 + sin 𝜃 ෝ𝜔 × Ԧ𝑟 + Ԧr ⋅ ෝ𝜔 ෝ𝜔

= cos 𝜃 Ԧ𝑟 + sin 𝜃 ෝ𝜔 × Ԧ𝑟 + 1 − cos 𝜃 Ԧr ⋅ ෝ𝜔 ෝ𝜔

Ԧ𝑟⊥ = Ԧ𝑟 − Ԧ𝑟∥ = Ԧ𝑟 − Ԧr ⋅ ෝ𝜔 ෝ𝜔

Ԧ𝑟⊥
′ = cos 𝜃 Ԧ𝑟⊥ + sin 𝜃 ෝ𝜔 × Ԧ𝑟

Ԧ𝑟’

Euler’s Rotation Theorem (in 3D Space)

• Any two orthonormal coordinate frames can be
related by a sequence of rotations (not more than
three) about coordinate axes

• Any two Cartesian coordinate systems with a
common origin are related by a rotation about some
fixed axis

Euler Angle

• 𝑅 𝛼, 𝛽, 𝛾 = 𝑅𝑧 𝛾 𝑅𝑦 𝛽 𝑅𝑥(𝛼)
– Product of 3 rotations around local axes

– Rotation order is important!
• Ex. XYZ, ZXY, YZX, etc.

 Intuitive control

 Smallest representation possible

× Non-unique representation for a given orientation

× Hard to interpolate

× Gimbal lock

https://en.wikipedia.org/wiki/Euler_angles#/media/File:Euler2a.gif

Degree of Freedom (DOF)

• A variable describing a particular axis or dimension of
movement

– 3D Rotation: 3DOFs
• Axis-angle: axis 𝜃, 𝜙 and rotation radius 𝛼

• Euler angle: 𝛼, 𝛽, 𝛾

– Rigid body transformation in 3D: 6 DOFs
• 3 for translation and 3 for rotation

Gimbal Lock

• When the second rotation value is ±𝜋/2, one degree
of freedom (DOF) would be lost

• Can we use any specific
rotation order to avoid this?

– Not possible!! 

Video: Euler (gimbal lock) Explained by The Guerrilla CG Project

z-axis is aligned with y-axis!!

https://www.youtube.com/watch?v=zc8b2Jo7mno

Singularity

• A continuous subspace of the parameter space,
where

– all elements correspond to the same rotation

– any movement within the subspace produces no change in
rotation

• NEVER be eliminated in any 3-dimensional
representation of SO(3)

– That's why do we need quaternion!

Singularity

• A continuous subspace of the parameter space,
where

– all elements correspond to the same rotation

– any movement within the subspace produces no change in
rotation

• NEVER be eliminated in any 3-dimensional
representation of SO(3)

– That's why do we need quaternion!

When you go east at the
North Pole, you are still at the

same position!!

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

Rotate About an Arbitrary Axis

1. Change to new frame

2. Rotate 𝛼 radians around

3. Transform back to standard basis

𝑥

𝑦

𝑧

𝑟

𝑡

𝑠
𝑟

𝑡

𝑠

𝑟
𝑡

𝑠

𝑀 𝑀𝑇

𝛼
1 3

2

2D Rotation in Complex Plane

𝑥′ + 𝑦′𝑖 = 𝑒𝑖𝜃 𝑥 + 𝑦𝑖

where 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃

𝑥′
𝑦′

=
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

𝑥
𝑦 (1,0)

(0,1)

cos 𝜃 , sin 𝜃− sin 𝜃 , 𝑐𝑜𝑠 𝜃

𝜃

2D Rotation in Complex Plane

𝑥′ + 𝑦′𝑖 = 𝑒𝑖𝜃 𝑥 + 𝑦𝑖

where 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃

𝑥′
𝑦′

=
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

𝑥
𝑦 (1,0)

(0,1)

cos 𝜃 , sin 𝜃− sin 𝜃 , 𝑐𝑜𝑠 𝜃

Is it possible to extend this concept to 3D?

𝜃

Quaternion

• Extend complex number to 3D

𝒊𝟐 = 𝒋𝟐 = 𝒌𝟐 = 𝒊𝒋𝒌 = −𝟏
𝑖𝑗 = 𝑘, 𝑗𝑘 = 𝑖, 𝑘𝑖 = 𝑗
𝑗𝑖 = −𝑘, 𝑘𝑗 = −𝑖, 𝑖𝑘 = −𝑗

William Rowan Hamilton (1805–1865)

Quaternion

• Can be represented in several ways:

𝑞 = 𝑤, 𝑥, 𝑦, 𝑧
𝑞 = 𝑤 + 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘
𝑞 = 𝑤 + 𝒗

scalar part vector part

Quaternion

𝑞0 ∗ 𝑞1 = 𝑤0 + 𝑥0𝑖 + 𝑦0𝑗 + 𝑧0𝑘 ∗ 𝑤1 + 𝑥1𝑖 + 𝑦1𝑗 + 𝑧1𝑘

= 𝑤0𝑤1 − 𝑥0𝑥1 − 𝑦0𝑦1 − 𝑧0𝑧1
+ 𝑤0𝑥1 + 𝑥0𝑤1 + 𝑦0𝑧1 − 𝑧0𝑦1 𝑖
+ 𝑤0𝑦1 + 𝑦0𝑤1 − 𝑥0𝑧1 + 𝑧0𝑥1 𝑗
+ 𝑤0𝑧1 + 𝑧0𝑤1 + 𝑥0𝑦1 − 𝑦0𝑥1 𝑘

𝒊𝟐 = 𝒋𝟐 = 𝒌𝟐 = 𝒊𝒋𝒌 = −𝟏
𝑖𝑗 = 𝑘, 𝑗𝑘 = 𝑖, 𝑘𝑖 = 𝑗
𝑗𝑖 = −𝑘, 𝑘𝑗 = −𝑖, 𝑖𝑘 = −𝑗

Hamilton product

Quaternion

𝑞0 ∗ 𝑞1 = 𝑤0 + 𝑥0𝑖 + 𝑦0𝑗 + 𝑧0𝑘 ∗ 𝑤1 + 𝑥1𝑖 + 𝑦1𝑗 + 𝑧1𝑘

= 𝑤0𝑤1 − 𝑥0𝑥1 − 𝑦0𝑦1 − 𝑧0𝑧1
+ 𝑤0𝑥1 + 𝑥0𝑤1 + 𝑦0𝑧1 − 𝑧0𝑦1 𝑖
+ 𝑤0𝑦1 + 𝑦0𝑤1 − 𝑥0𝑧1 + 𝑧0𝑥1 𝑗
+ 𝑤0𝑧1 + 𝑧0𝑤1 + 𝑥0𝑦1 − 𝑦0𝑥1 𝑘

= 𝑤0𝑤1 − 𝒗𝟎 ⋅ 𝒗𝟏 + 𝑤0𝒗𝟏 +𝑤1𝒗𝟎 + 𝒗𝟎 × 𝒗𝟏

𝒊𝟐 = 𝒋𝟐 = 𝒌𝟐 = 𝒊𝒋𝒌 = −𝟏
𝑖𝑗 = 𝑘, 𝑗𝑘 = 𝑖, 𝑘𝑖 = 𝑗
𝑗𝑖 = −𝑘, 𝑘𝑗 = −𝑖, 𝑖𝑘 = −𝑗

Hamilton product

Quaternion

𝑞0 ∗ 𝑞1 = 𝑤0 + 𝑥0𝑖 + 𝑦0𝑗 + 𝑧0𝑘 ∗ 𝑤1 + 𝑥1𝑖 + 𝑦1𝑗 + 𝑧1𝑘

= 𝑤0𝑤1 − 𝑥0𝑥1 − 𝑦0𝑦1 − 𝑧0𝑧1
+ 𝑤0𝑥1 + 𝑥0𝑤1 + 𝑦0𝑧1 − 𝑧0𝑦1 𝑖
+ 𝑤0𝑦1 + 𝑦0𝑤1 − 𝑥0𝑧1 + 𝑧0𝑥1 𝑗
+ 𝑤0𝑧1 + 𝑧0𝑤1 + 𝑥0𝑦1 − 𝑦0𝑥1 𝑘

= 𝑤0𝑤1 − 𝒗𝟎 ⋅ 𝒗𝟏 + 𝑤0𝒗𝟏 +𝑤1𝒗𝟎 + 𝒗𝟎 × 𝒗𝟏

𝑞1 ∗ 𝑞0 ≠ 𝑞0 ∗ 𝑞1

non-commutative!

𝒊𝟐 = 𝒋𝟐 = 𝒌𝟐 = 𝒊𝒋𝒌 = −𝟏
𝑖𝑗 = 𝑘, 𝑗𝑘 = 𝑖, 𝑘𝑖 = 𝑗
𝑗𝑖 = −𝑘, 𝑘𝑗 = −𝑖, 𝑖𝑘 = −𝑗

Hamilton product

Quaternion (Cont’d)

• Identity: 𝐪 = 1, 0, 0, 0 T

• Conjugate: 𝑞∗ = 𝑤,−𝒗

• 𝑞∗ ∗ = 𝑞

• 𝑝𝑞 ∗ = 𝑞∗𝑝∗

• 𝑝 + 𝑞 ∗ = 𝑝∗ + 𝑞∗

• 𝑞0 + 𝑞1 = 𝑤0 +𝑤1, 𝒗𝟎 + 𝒗𝟏
• 𝛼𝑞 = 𝑞𝛼 = (𝛼𝑤, 𝛼𝒗)

Quaternion (Cont’d)

• Norm: 𝑁 𝑞 = 𝑞𝑞∗ = 𝑞∗𝑞 = 𝑤2 + 𝑥2 + 𝑦2 + 𝑧2

• 𝑁 𝒒𝟎𝒒𝟏 = 𝑁 𝒒𝟎 𝑁 𝒒𝟏
• 𝑁 𝒒∗ = 𝑁(𝒒)

• Inverse: 𝒒−𝟏 =
𝒒∗

𝑁 𝒒

• 𝐪 ∘ 𝐪−1 = 𝐪−1 ∘ 𝐪 = 1, 0, 0, 0 T

• 𝒒𝟎𝒒𝟏
−1 = 𝒒𝟏

−𝟏𝒒𝟎
−𝟏

• Difference: 𝐪𝟎𝐪𝐝 = 𝒒𝟏 ⇒ 𝒒𝒅 = 𝒒𝟎
−𝟏𝒒𝟏

Unit Quaternion

𝐪 = w, x, y, z 𝑇 = cos
θ

2
, sin

θ

2
ො𝐯

T

ො𝐯

θ

Unit Quaternion

𝐪 = w, x, y, z 𝑇 = cos
θ

2
, sin

θ

2
ො𝐯

T

ො𝐯

θ

why
𝟏

𝟐
???

Rotation with Quaternion

• p′ = Rotate 𝒑 = q ∘ ෤𝑝 ∘ q−1

– Rotate a vector 𝐩 ∈ ℝ3 by an unit quaternion q ∈ 𝒮3

– ෤𝑝 = (0, 𝒑)T extended with a zero scalar component

– Rotate() function would strips off
the scalar part of quaternion

Figure from Real-time Rendering, 3/e

Quaternion – Why 𝜃/2 ??

𝑞𝑝𝑞−1 = 𝑤 + 𝑡 ො𝑣 Ԧ𝑝 𝑤 + 𝑡 ො𝑣 −1

= −𝑡 ො𝑣 ⋅ Ԧ𝑝 + 𝑤 Ԧ𝑝 + 𝑡 ො𝑣 × Ԧ𝑝 (𝑤 − 𝑡 ො𝑣)

= −𝑤𝑡 ො𝑣 ⋅ Ԧ𝑝 + 𝑤 Ԧ𝑝 + 𝑡 ො𝑣 × Ԧ𝑝 ⋅ 𝑡 ො𝑣 + 𝑤 𝑤 Ԧ𝑝 + 𝑡 ො𝑣 × Ԧ𝑝

+ 𝑡 ො𝑣 ⋅ Ԧ𝑝 𝑡 ො𝑣 − 𝑤 Ԧ𝑝 + 𝑡 ො𝑣 × Ԧ𝑝 × 𝑡 ො𝑣

= 𝑤2 Ԧ𝑝 + 2𝑤𝑡 ො𝑣 × Ԧ𝑝 + 𝑡2 ො𝑣 ⋅ Ԧ𝑝 ො𝑣 − 𝑡2 ො𝑣 × Ԧ𝑝 × ො𝑣

= 𝑤2 − 𝑡2 Ԧ𝑝 + 2𝑤𝑡 ො𝑣 × Ԧ𝑝 + 2𝑡2 Ԧ𝑝 ⋅ ො𝑣 ො𝑣

Recall: 𝑞0𝑞1 = 𝑤0𝑤1 − 𝒗𝟎 ⋅ 𝒗𝟏 +𝑤0𝒗𝟏 +𝑤1𝒗𝟎 + 𝒗𝟎 × 𝒗𝟏

ps. suppose 𝒒 is an unit quaternion

Quaternion – Why 𝜃/2 ??

𝑞𝑝𝑞−1 = 𝑤 + 𝑡 ො𝑣 Ԧ𝑝 𝑤 + 𝑡 ො𝑣 −1

= −𝑡 ො𝑣 ⋅ Ԧ𝑝 + 𝑤 Ԧ𝑝 + 𝑡 ො𝑣 × Ԧ𝑝 (𝑤 − 𝑡 ො𝑣)

= −𝑤𝑡 ො𝑣 ⋅ Ԧ𝑝 + 𝑤 Ԧ𝑝 + 𝑡 ො𝑣 × Ԧ𝑝 ⋅ 𝑡 ො𝑣 + 𝑤 𝑤 Ԧ𝑝 + 𝑡 ො𝑣 × Ԧ𝑝

+ 𝑡 ො𝑣 ⋅ Ԧ𝑝 𝑡 ො𝑣 − 𝑤 Ԧ𝑝 + 𝑡 ො𝑣 × Ԧ𝑝 × 𝑡 ො𝑣

= 𝑤2 Ԧ𝑝 + 2𝑤𝑡 ො𝑣 × Ԧ𝑝 + 𝑡2 ො𝑣 ⋅ Ԧ𝑝 ො𝑣 − 𝑡2 ො𝑣 × Ԧ𝑝 × ො𝑣

= 𝑤2 − 𝑡2 Ԧ𝑝 + 2𝑤𝑡 ො𝑣 × Ԧ𝑝 + 2𝑡2 Ԧ𝑝 ⋅ ො𝑣 ො𝑣

Look familiar??

Recall: 𝑞0𝑞1 = 𝑤0𝑤1 − 𝒗𝟎 ⋅ 𝒗𝟏 +𝑤0𝒗𝟏 +𝑤1𝒗𝟎 + 𝒗𝟎 × 𝒗𝟏

ps. suppose 𝒒 is an unit quaternion

Axis-Angle Rotation

Ԧ𝑟′ = cos 𝜃 Ԧ𝑟 + sin 𝜃 ෝ𝜔 × Ԧ𝑟 + 1 − cos 𝜃 Ԧr ⋅ ෝ𝜔 ෝ𝜔

ෝ𝜔

𝜃 = 𝜔

Ԧ𝑟Ԧ𝑟∥

Ԧ𝑟⊥Ԧ𝑟⊥
′

Ԧ𝑟’

Quaternion – Why 𝜃/2 ?? (Cont’d)

𝑞𝑝𝑞−1 = 𝑤 + 𝑡 ො𝑣 Ԧ𝑝 𝑤 + 𝑡 ො𝑣 −1

= −𝑡 ො𝑣 ⋅ Ԧ𝑝 + 𝑤 Ԧ𝑝 + 𝑡 ො𝑣 × Ԧ𝑝 (𝑤 − 𝑡 ො𝑣)

= −𝑤𝑡 ො𝑣 ⋅ Ԧ𝑝 + 𝑤 Ԧ𝑝 + 𝑡 ො𝑣 × Ԧ𝑝 ⋅ 𝑡 ො𝑣 + 𝑤 𝑤 Ԧ𝑝 + 𝑡 ො𝑣 × Ԧ𝑝

+ 𝑡 ො𝑣 ⋅ Ԧ𝑝 𝑡 ො𝑣 − 𝑤 Ԧ𝑝 + 𝑡 ො𝑣 × Ԧ𝑝 × 𝑡 ො𝑣

= 𝑤2 Ԧ𝑝 + 2𝑤𝑡 ො𝑣 × Ԧ𝑝 + 𝑡2 ො𝑣 ⋅ Ԧ𝑝 ො𝑣 − 𝑡2 ො𝑣 × Ԧ𝑝 × ො𝑣

= 𝑤2 − 𝑡2 Ԧ𝑝 + 2𝑤𝑡 ො𝑣 × Ԧ𝑝 + 2𝑡2 Ԧ𝑝 ⋅ ො𝑣 ො𝑣

Ԧ𝑟′ = cos 𝜃 Ԧ𝑟 + sin 𝜃 ෝ𝜔 × Ԧ𝑟 + 1 − cos 𝜃 Ԧr ⋅ ෝ𝜔 ෝ𝜔

Quaternion – Why 𝜃/2 ?? (Cont’d)

𝑤2 − 𝑡2 = cos 𝜃
2𝑤𝑡 = sin 𝜃
2𝑡2 = 1 − cos 𝜃 ⇒ 𝑡 = sin

𝜃

2
⇒ 𝑤 = cos

𝜃

2

where 2 sin 𝜃 cos 𝜃 = sin 2𝜃

Therefore the unit quaternion is

𝒒 = (cos
θ

2
, sin

θ

2
ො𝐯)↔ rotate 𝜃 around axis ොv

Quaternion – Why 𝜃/2 ?? (Cont’d)

𝑤2 − 𝑡2 = cos 𝜃
2𝑤𝑡 = sin 𝜃
2𝑡2 = 1 − cos 𝜃 ⇒ 𝑡 = sin

𝜃

2
⇒ 𝑤 = cos

𝜃

2

where 2 sin 𝜃 cos 𝜃 = sin 2𝜃

Therefore the unit quaternion is

𝒒 = (cos
θ

2
, sin

θ

2
ො𝐯)↔ rotate 𝜃 around axis ොv

http://www.cs.ucr.edu/~vbz/resources/quatut.pdf
http://www.amazon.com/Game-Physics-David-H-Eberly/dp/0123749034/ref=pd_sim_14_8?ie=UTF8&dpID=41LLpwMxXwL&dpSrc=sims&preST=_AC_UL160_SR130,160_&refRID=10R4Q4N4YSK19HBZ3BVM

Quaternion 𝑞𝑝𝑞−1

• Concatenation

• 𝑞1 ⋅ 𝑞0 ⋅ 𝑝 ⋅ 𝑞0
−1 ⋅ 𝑞1

−1 = 𝑞1 ⋅ 𝑞0 ⋅ 𝑝 ⋅ 𝑞1 ⋅ 𝑞0
−1

• Any non-zero real multiple of q gives the same action

• 𝑠𝑞 𝑝 𝑠𝑞 −1 = (𝑠𝑞)𝑝(𝑞−1𝑠−1) = 𝑞𝑝𝑞−1𝑠𝑠−1 = 𝑞𝑝𝑞−1

Quaternion – Linear Interpolation

Quaternion – Linear Interpolation

Quaternion – Linear Interpolation

Quaternion – Linear Interpolation

Its angular speed is NOT constant!

Quaternion – Spherical Linear Interpolation

𝑞0

𝑞1
𝑞𝑡 = (cos 𝛼𝑡)𝑞0 + (sin 𝛼𝑡)𝑞′1

𝑞1
′ =

𝑞1 − cos 𝛼 𝑞0
sin 𝛼

𝑞𝑡 =
sin 1 − 𝑡 𝛼

sin 𝛼
q0 +

sin 𝛼𝑡

sin 𝛼
q1

𝑞′1

𝛼 𝛼𝑡

𝑞𝑡

Numerical error as 𝛼 → 0, use lerp instead!

Quaternion - Interpolation Path

Animated rotation in Maya

https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2015/ENU/Maya/files/Animation-Basics-Animated-rotation-in-Maya-htm.html

Why Quaternion?

• Smooth interpolation with slerp

• Without singularity (Gimbal Lock)

• Compact representation (only 4 numbers)

• Fast conversion from/to matrix representation

• Fast concatenation and inversion of angular
displacements

Character Animation

Skeleton

Hotel Transylvania / Zombie Rig from SONY Pictures Animation

https://secure.sonypictures.com/animation/hotelt/zombierig/videosubmissions/

Kinematic Chain

point

hinge

slider

End Effector

Joints

Bullet constraint types

https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2015/ENU/Maya/files/GUID-CDB3638D-23AF-49EF-8EF6-53081EE4D39D-htm.html

Degree of Freedom (DOF)

• A variable describing a particular axis or dimension of
movement within a joint

• Rigid body transformation

– 6 DOFs

– 3 for position and 3 for rotation

• Pose: a vector of N numbers that maps to a set of
DOFs in the skeleton

Forward Kinematics

Hotel Transylvania / Zombie Rig from SONY Pictures Animation

https://secure.sonypictures.com/animation/hotelt/zombierig/videosubmissions/

Inverse Kinematics

Hotel Transylvania / Zombie Rig from SONY Pictures Animation

https://secure.sonypictures.com/animation/hotelt/zombierig/videosubmissions/

Linear Blend Skinning (LBS)

𝑣𝑖
′ = ෍

𝑗=1

𝑚

𝑤𝑖,𝑗𝑇𝑗𝑣𝑖 = ෍

𝑗=1

𝑚

𝑤𝑖,𝑗𝑇𝑗 𝑣𝑖

transformation of joint j

Rigid binding: each vertex is only affected by one joint
Smooth binding: each vertex is affected by multiple joints (< 4)

blending weights for joint j to vertex i

෍

𝑗=1

𝑚

𝑤𝑖,𝑗 = 1,

0 ≤ 𝑤𝑖,𝑗 ≤ 1

Linear Blend Skinning (LBS)

𝑣𝑖
′ = ෍

𝑗=1

𝑚

𝑤𝑖,𝑗𝑇𝑗𝑣𝑖 = ෍

𝑗=1

𝑚

𝑤𝑖,𝑗𝑇𝑗 𝑣𝑖

transformation of joint j

Rigid binding: each vertex is only affected by one joint
Smooth binding: each vertex is affected by multiple joints (< 4)

blending weights for joint j to vertex i

෍

𝑗=1

𝑚

𝑤𝑖,𝑗 = 1,

0 ≤ 𝑤𝑖,𝑗 ≤ 1

Bad smell, lerping matrices!?

Direct Matrix Interpolation

• Lerped rotation matrix is NOT a rotation matrix

[Lewis et al., SIG’00]

Direct Matrix Interpolation

• Lerped rotation matrix is NOT a rotation matrix

[Lewis et al., SIG’00]

http://scribblethink.org/Work/PSD/PSD.pdf
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http:/research.cs.wisc.edu/graphics/Courses/838-s2002/Papers/polar-decomp.pdf

Discrete Laplace-Beltrami

𝐿𝐶 𝑣𝑖 =
1

2𝐴 𝑣𝑖
෍

𝑣

cot 𝛼𝑖𝑗 + cot 𝛽𝑖𝑗 𝑣𝑗 − 𝑣𝑖

𝛼𝑖𝑗

𝛽𝑖𝑗

𝑣𝑖

𝑣𝑗

𝑣𝑖

𝑣𝑗

𝑣𝑖

𝑣𝑗

Measures the difference between
the value of the function at that point and

the average of the values at surrounding points

http://libigl.github.io/libigl/tutorial/tutorial.html

𝑉′ = 𝐿𝐶 𝑉 + 𝑉

Mesh Smoothing

http://libigl.github.io/libigl/tutorial/tutorial.html

[Sorkine et al., EG’05]

chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https:/igl.ethz.ch/projects/Laplacian-mesh-processing/STAR/STAR-Laplacian-mesh-processing.pdf

𝑠ℎ𝑎𝑝𝑒 = 𝑓 𝑠𝑝𝑎𝑐𝑒

𝑠ℎ𝑎𝑝𝑒 = 𝑓(𝑠ℎ𝑎𝑝𝑒)

Deformation

space/volume/free-form deformer

surface deformer

Deformer

• Change the position of vertices

– Vertices in, vertices out

– Topology is unchanged

• Users manipulate the shape via handles such as

– curve

– cage

– proxy mesh

– etc.

[Jacobson et al., SIG'11]

http://igl.ethz.ch/projects/bbw/

Why Deformer?

• Manipulate mesh for aesthetic purposes

– Squash, stretch, collision, etc.

• Character posing for animation

• Fake dynamics

– Secondary animation by using procedural

• Simulation post-fix?

– I think it would be great for production

Deformer Requirements

• Sufficiently fast & robust

• Easy to setup and control

• Aesthetically pleasing

– Physically plausible

– Preserve local details or volume

• Large scale deformation (optional)

Space Deformation: 𝑠ℎ𝑎𝑝𝑒 = 𝑓(𝑠𝑝𝑎𝑐𝑒)

[Singh and Fiume 98]

[Sederberg and Parry, SIG’86]
[Botsch and Kobbelt, EG’05]

https://www.graphics.rwth-aachen.de/media/papers/rbf-modeling1.pdf

Space Deformation: 𝑠ℎ𝑎𝑝𝑒 = 𝑓(𝑠𝑝𝑎𝑐𝑒)

[Joshi et al., SIG’07]

[Ju et al., SIG’05]

http://graphics.pixar.com/library/HarmonicCoordinatesB/index.html
http://www.cs.berkeley.edu/~jrs/meshpapers/meanvalue.pdf

Coordinate Mapping

• How do we compute the weights inside?
Ans.: Generalized Barycentric Coordinates

𝑥𝑖 𝑓𝑖
𝑥

𝑔(𝑥)

𝑔 𝑥 =෍

𝑖=1

𝑛

𝑤𝑖 𝑥 𝑓𝑖

[Ju et al. ’05]

should be smooth!!

http://www.inf.usi.ch/hormann/barycentric/

Coordinate Mapping (Cont’d)

Mean Value Coordinate Harmonic Coordinate

[Joshi et al., SIG’07]

http://graphics.pixar.com/library/HarmonicCoordinatesB/index.html

Coordinate Mapping (Cont’d)

Mean Value Coordinate Harmonic Coordinate

negative weights!! [Joshi et al., SIG’07]

http://graphics.pixar.com/library/HarmonicCoordinatesB/index.html

Coordinate Mapping (Cont’d)

Mean Value Coordinate Harmonic Coordinate

[Joshi et al., SIG’07]

http://graphics.pixar.com/library/HarmonicCoordinatesB/index.html

Surface Deformation: 𝑠ℎ𝑎𝑝𝑒 = 𝑓(𝑠ℎ𝑎𝑝𝑒)

[Sorkine and Alexa, SGP’07]

[Sorkine et al., SGP’04]

[Botsch et al., SGP’06]

http://igl.ethz.ch/projects/ARAP/index.php
http://igl.ethz.ch/projects/Laplacian-mesh-processing/Laplacian-mesh-editing/index.php
http://lgg.epfl.ch/publications/2006/botsch_2006_PMO.pdf

General Framework of Surface Deformation

𝑥′ = argmin
𝑥′

𝑓 𝑥′

subject to 𝑥𝑖
′ = 𝑐𝑖

General Framework of Surface Deformation

𝑥′ = argmin
𝑥′

𝑓 𝑥′

subject to 𝑥𝑖
′ = 𝑐𝑖

objective (energy function)

equality constraints

Bi-Harmonic Deformation

handle
𝑑 = 𝛿ℎ

fixed area (constraints)
𝑑 = 0

𝐿𝑐
2

0 𝐈 0
0 0 𝐈

⋮
𝑑𝑖
⋮

=
0
0
𝛿ℎ𝑖

𝐿𝐶
2𝑑 = 0

Laplacian Surface Editing

[Sorkine et al., SGP’04]

http://igl.ethz.ch/projects/Laplacian-mesh-processing/Laplacian-mesh-editing/index.php

Laplacian Surface Editing (Cont’d)

𝑣′ = 𝑎𝑟𝑔min
v′

෍

𝑖=1

𝑛

𝐿𝑐 𝑣𝑖
′ − 𝑇𝑖𝐿𝐶 𝑣𝑖

2 +෍

𝑗∈𝐶

𝑣𝑗
′ − 𝑢𝑗

2

user constraints
similarity transformation

Laplacian coordinate is not rotation invariant,
thus we need 𝑇𝑖 for alignment (rotation + scale).

Multiresolution Editing

[Botsch and Sorkine. TVCG’08]

http://igl.ethz.ch/projects/deformation-survey/

Face Animation

• Given a set of models for each facial expression

– Each model has identical topology

• How to tweak the expression via parameters?

– PCA (Principal Component Analysis)

– BlendShapes

BlendShape

𝑓 = 𝑏0 +෍

𝑘=1

𝑛

𝑤𝑘(𝑏𝑘 − 𝑏0)

𝑓 = 𝑏0 + 𝐵𝑤

Character Rig from Mery Project

http://www.meryproject.com/

BlendShape

𝑓 = 𝑏0 +෍

𝑘=1

𝑛

𝑤𝑘(𝑏𝑘 − 𝑏0)

𝑓 = 𝑏0 + 𝐵𝑤

Character Rig from Mery Project

http://www.meryproject.com/

BlendShape

𝑓 = 𝑏0 +෍

𝑘=1

𝑛

𝑤𝑘(𝑏𝑘 − 𝑏0)

𝑓 = 𝑏0 + 𝐵𝑤

Character Rig from Mery Project

…

http://www.meryproject.com/

Comparison

PCA

• Orthogonal

• Lack the interpretability

BlendShape

• Semantic parameterization

• Consistent appearance

• Lack of orthogonality

• Not unique:
𝑓 = 𝐵 𝑅𝑅−1 𝑤

Facial Action Coding System (FACS)

[The Art of Digital Faces at ICT – Digital Emily to Digital Ira, fxguide. 2013]

https://www.fxguide.com/featured/the-art-of-digital-faces-at-ict-from-digital-emily-to-digital-ira/

Practical Issues

• How to compress BlendShape data?

• Expression transfer between multiple characters

– Use deformation transfer for BlendShape targets

[Sumner and Popović, SIG’04]

http://people.csail.mit.edu/sumner/research/deftransfer/Sumner2004DTF.pdf

Facial Rigging

[Orvalho et al., EG’12]

http://www.portointeractivecenter.org/site/wp-content/uploads/2012/04/A-facial-rigging-survey1.pdf

Uncanny Valley

https://en.wikipedia.org/wiki/File:Mori_Uncanny_Valley.svg

Practical Issues

• How to provide intuitive controls?

– Too many => hard to manipulate

– Not enough => can’t get enough animation details

• In node-based framework, computation = graph
evaluation

– How do we separate the evaluation graph for parallelism?

Parallel Graph Evaluation

Parallel Graph Evaluation

Parallel Graph Evaluation (Cont’d)

• Parallelization is NOT just about using TBB or CUDA

• Graph analysis is a key for performance gain
– But the graph evaluation routine in Maya is a black box!!

• Numerical issue
– Consistency between serial and parallel implementation

• Due to rounding error and truncation of floating point

– Deterministic algorithm?

Multi-threading in Node-Based Architecture

Per-Node Multi-threading Per-Branch Multi-threading

Per-Object Multi-threading

Multi-threading in Node-Based Architecture

Per-Node Multi-threading Per-Branch Multi-threading

Per-Object Multi-threading

Multi-threading in Node-Based Architecture

Per-Node Multi-threading Per-Branch Multi-threading

Per-Object Multi-threading

http://www.multithreadingandvfx.org/course_notes/

Physically Based Animation

Cloth

[Baraff and Witkin. SIG’98] [Tamstorf et al., SIGA’15]

https://www.disneyresearch.com/publication/smoothed-aggregation-multigrid/

Hair

[Bergou et al., SIG’08]

[Iben et al., SCA’13]

[Selle et al., SIG’08]

http://www.cs.columbia.edu/cg/rods/
http://www.andyselle.com/papers/9/

Force-Based Dynamics

Position-Based Dynamics

[Figures from Müller et al., “Position Based Dynamics”, VRIPHYS’06]

Comparison

Force-Based
 Physically accurate

– Newton second law
– Navier-Stokes
– …, etc.

• Explicit integration
– Not stable for stiff system
– Overshooting

• Implicit integration
– Computationally expensive
– Numerical damping

Position-Based

 Fast

 Unconditionally stable

 Controllable

• Less physically accurate

• Need to explore new ways
to update velocity

Unified Particle Physics

[Macklin et al., SIG’14]

References

• Quaternions, Ken Shoemake.

• Understanding Rotations, Jim Van Verth.

• On Linear Variational Surface Deformation Methods,
Mario Botsch, Olga Sorkine-Hornung.

• Skinning: Real-time Shape Deformation, SIG’14.

• Laplace-Beltrami: The Swiss Army Knife of Geometry
Processing, SGP’14.

http://igl.ethz.ch/projects/deformation-survey/
http://www.essentialmath.com/GDC2012/GDC2012_JMV_Rotations.pdf
http://igl.ethz.ch/projects/deformation-survey/
http://skinning.org/
http://ddg.cs.columbia.edu/SGP2014/LaplaceBeltrami.pdf

