Physically-Based Rendering

Shih-Chin Weng shihchin.weng@gmail.com

What is PBR?

SOLIDANGLE

The Chemical Brothers - Wide Open, The Mill

Physically Based Rendering

Simulate materials and lights based on physical laws or observations of real world more accurately.

Stages of Photorealistic Rendering

- Measurement and acquisition of scene data – BRDF, BSSRDF, BTF, etc.
- Light transport simulation

 Ray tracing, photon-mapping, radiosity, etc.

 Visual display
 - Tone mapping

What Is Light?

AAA

ELECTROMAGNETIC SPECTRUM

Geometric Optics

- Assumption: the wavelength of light is much smaller than the scale of interacted object
- Light travels
 - in straight lines
 - instantaneously through a medium
- Light is not influenced by gravity or magnetic fields
 - No diffraction, dispersion
 - But the movie "Interstellar" does simulate the light bent by gravity!!

Light Matter Interaction

Snell's Law

Photo by Gabriel Gurrold

Snell's Law

 $\sin \theta_i \eta_i = \sin \theta_t \eta_t$

Index of Refraction (IOR): η

https://en.wikipedia.org/wiki/Snell%27s_law#/media/File:Snells_law_wavefronts.gif

Snell's Law

 $\sin \theta_i \eta_i = \sin \theta_t \eta_t$

Index of Refraction (IOR): η

https://en.wikipedia.org/wiki/Snell%27s_law#/media/File:Snells_law_wavefronts.gif

Fresnel Effect

reflection

refraction

Photo by Ales Krivec

Fresnel Effect

F0

more and more reflective -- as the angle of view approaches a grazing angle

reflectance at normal

Fresnel

- Fresnel reflectance
 - the amount of reflected light w.r.t. the viewing angle
- Relates the ratio of reflected and transmitted energy as a function of
 - Incident direction
 - Polarization
 - Materials' properties

Material Properties

Non-metal (dielectrics)

- Only reflect 4~10% of incoming light in average
- The reflection intensity is independent on the wavelength
- No energy is absorbed during reflection
 - but might be absorbed during subsurface scattering

Metal

- IOR strongly depends on the wavelength
- Immediately absorbs refracted lights (i.e. no refraction)
 - The reflected lights would change their color

Reflection goes to **100%** *at grazing angle!*

Fresnel

.....

for unpolarized light

$\mathbf{F}_{\mathrm{r}} = \frac{1}{2} \left(r_{\parallel}^2 + r_{\perp}^2 \right)$

Dielectric

$$r_{\parallel} = \frac{\eta_t \cos \theta_i - \eta_i \cos \theta_t}{\eta_t \cos \theta_i + \eta_i \cos \theta_t}$$
$$r_{\perp} = \frac{\eta_i \cos \theta_i - \eta_t \cos \theta_t}{\eta_i \cos \theta_i + \eta_t \cos \theta_t}$$

Conductor

$$r_{\parallel}^{2} = \frac{(\eta^{2} + k^{2})\cos^{2}\theta_{i} - 2\eta\cos\theta_{i} + 1}{(\eta^{2} + k^{2})\cos^{2}\theta_{i} + 2\eta\cos\theta_{i} + 1}$$
$$r_{\perp}^{2} = \frac{(\eta^{2} + k^{2}) - 2\eta\cos\theta_{i} + \cos^{2}\theta_{i}}{(\eta^{2} + k^{2}) + 2\eta\cos\theta_{i} + \cos^{2}\theta_{i}}$$

Radiometry

Radiant flux $\Phi = \frac{dQ}{dt}$ (J/sec) The total amount of energy passing through a region of surface per unit time

Irradiance $E = \frac{d\Phi}{dA}$ Pre area incoming flux at a surface

Radiant Exitance or Radiosity $M = B = \frac{d\Phi}{dA}$ the total amount Φ measured at **inner** and **outer** sphere is **the same** (equals to the radiant flux of the point light)

Lambert's Cosine Law

 $dA = dA'\cos\theta$

dΦ E_1 dA

 $E_2 = \frac{d\Phi}{dA'} = \frac{\cos\theta \, d\Phi}{dA} = E_1 \cos\theta$

Solidangle

- The total area on a unit sphere subtended by the object
- A set of *directions*
- Measured in steradians (sr)
- Often denoted as ω

The density of photons passing near x and traveling in directions near ω

Bidirectional Reflection Distribution Function

 $f(\theta_i, \phi_i, \theta_o, \phi_o) = f(\vec{\omega}_i, \vec{\omega}_o)$

BRDF Definition

spending **BRDF** Definition income outgoing radiance $=\frac{dL_{r}(\vec{\omega}_{o})}{L_{i}(\vec{\omega}_{i})\cos\theta_{i}\,d\omega_{i}}$ $f(\vec{\omega}_i, \vec{\omega}_o)$ incoming *irradiance*

Properties of BRDFs

- Helmholtz reciprocity
 - symmetric surface reflectance $f(\vec{\omega}_i, \vec{\omega}_o) = f(\vec{\omega}_o, \vec{\omega}_i)$
- Positivity

 $f(\vec{\omega}_i, \vec{\omega}_o) \ge 0$

- Energy conservation
 - Total amount of outgoing energy must be *less than or* equal to the incoming energy

BRDF

from Disney Animation

http://www.disneyanimation.com/technology/brdf.html

6 X

0

0 X

Isotropic vs. Anisotropic

- Isotropic BRDFs are independent of incident azimuth angle ϕ

BRDF Acquisition

• Light

source

[White et al, JAO 98]

MERL 100 http://www.merl.com/brdf/

"A Data-Driven Reflectance Model", Matusik et al., SIG'03

BRDF Data Fitting

[Ngan et al., 2005]

 $\vec{l} + \vec{v}$ \vec{h} = - $\|\vec{l} + \vec{v}\|$

macrogeometry

macrogeometry

 $\vec{l} + \vec{v}$ $\vec{h} = \|\vec{l} + \vec{v}\|$

microfacet: ideal mirror

macrogeometry

 $\vec{l} + \vec{v}$ $\vec{h} = \|\vec{l} + \vec{v}\|$

General Microfacet BRDF

The ratio of micro-surface area visible to the light, viewer

 θ_l, θ_v : angle between \vec{l}, \vec{v} and normal θ_h : angle between normal and \vec{h} θ_d : difference between \vec{l} (or \vec{v}) and \vec{h}

Fresnel

Schlick's approximation

$$F_{Schlick} = F_0 + (1 - F_0)(1 - \overline{\cos \theta_i})^5$$

- Where
$$F_0 = \left(\frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}\right)^2$$

• a.k.a. reflectance at normal, normal reflectance, etc.

? What if $\eta_2 = \eta_1$

• *F* should be zero but $F_{Schlick} = (1 - \overline{\cos \theta_i})^5 \neq 0$

NDF (Normal Distribution Function)

- Half vector $\vec{h} = \frac{\vec{l} + \vec{v}}{\|\vec{l} + \vec{v}\|}$
- As for perfect mirror microfacets, we can only see those facets whose normal vector $\vec{m} = \vec{h}$

Highlights at Grazing Angles

Photo by Liu Zai Hou

Data Fitting of Acquired Data

Highlights at Grazing Angles

Data Fitting of Acquired Data (Cont'd)

[Ngan et al., SIG'04]

 Measures area density of microsurface with respect to microsurface normal

$$D(\boldsymbol{\omega}) = \int_{\mathcal{M}} \delta_{\boldsymbol{\omega}} \big(\omega_m(p_m) \big) dp_m$$

– microsurface

 Measures area density of microsurface with respect to microsurface normal

$$D(\boldsymbol{\omega}) = \int_{\mathcal{M}} \delta_{\boldsymbol{\omega}} \big(\omega_m(p_m) \big) dp_m$$

- microsurface

 Measures area density of microsurface with respect to microsurface normal

$$D(\boldsymbol{\omega}) = \int_{\mathcal{M}} \delta_{\boldsymbol{\omega}} \big(\omega_m(p_m) \big) dp_m$$

- microsurface

 Measures area density of microsurface with respect to microsurface normal

 $\omega_m: \mathcal{M} \to \Omega$

$$D(\boldsymbol{\omega}) = \int_{\mathcal{M}} \delta_{\boldsymbol{\omega}} \big(\omega_m(p_m) \big) dp_m$$

- microsurface

microsurface area =
$$\int_{\mathcal{M}} dp_m = \int_{\mathbf{O}} D(\omega_m) d\omega_m$$

projected microsurface area = $\int_{\Omega} (\omega_m \cdot \omega_g) D(\omega_m) d\omega_m$

projection

 ω_q : normal of macrosurface

Masking/Shadowing

shadowing

Conservation of Projected Area

masking function

Conservation of Projected Area

$$\cos \theta_o = \int_{\Omega} G_1(\omega_o, \omega_m) \langle \omega_o, \omega_m \rangle D(\omega_m) d\omega_m$$

masking function

BRDF Validation

What makes it physically-based?

- 1. Reciprocity: f(l, v) = f(v, l)
- 2. Positivity: f(l, v) > 0
- 3. Energy conservation: $\int_{\Omega} f(l, v) \cos \theta_i \, d\omega_i \leq 1$

What do we miss?

Multiple Surface Bounces?

 $\alpha = 0.1$

 $\alpha = 0.3$

 $\alpha = 0.5$

 $\alpha = 0.7$

[<u>Heitz</u>, 2015]

References

- *Physically-based Rendering*. SIGGRAPH Course Notes 2011~15.
- Ngan et al., *Experimental Analysis of BRDF Models*. Technical Report 2005.
- Eric Heitz, Understanding the Masking-Shadowing Function. SIG'14.
- Brent Burley, *Physically Based Shading at Disney*. SIG'12 Course Note.
- Steve Marschner, <u>Microfacet models for refection and refraction</u>, Cornell University, CS 6630, Fall 2015.