Physically-Based Rendering

Shih-Chin Weng
shihchin.weng@gmail.com

What is PBR?

Physically Based Rendering

Simulate materials and lights based on physical laws or observations of real world more accurately.

Stages of Photorealistic Rendering

1. Measurement and acquisition of scene data

- BRDF, BSSRDF, BTF, etc.

2. Light transport simulation

- Ray tracing, photon-mapping, radiosity, etc.

3. Visual display

- Tone mapping

What Is Light?

ELECTROMAGNETIC SPECTRUM

INVISIBLE TO THE HUMAN EYE
INVISIBLE TO THE HUMAN EYE

Geometric Optics

- Assumption: the wavelength of light is much smaller than the scale of interacted object
- Light travels
- in straight lines
- instantaneously through a medium
- Light is not influenced by gravity or magnetic fields
- No diffraction, dispersion
- But the movie "Interstellar" does simulate the light bent by gravity!!

Light Matter Interaction

Snell's Law

$\sin \theta_{i} \eta_{i}=\sin \theta_{t} \eta_{t}$

Index of Refraction (IOR): η

Snell's Law

$\sin \theta_{i} \eta_{i}=\sin \theta_{t} \eta_{t}$

Index of Refraction (IOR): η

Fresnel Effect

Fresnel Effect

more and more reflective
reflectance at normal

Fresnel

- Fresnel reflectance
- the amount of reflected light w.r.t. the viewing angle
- Relates the ratio of reflected and transmitted energy as a function of
- Incident direction
- Polarization
- Materials' properties

Material Properties

Non-metal (dielectrics)

- Only reflect $4^{\sim} 10 \%$ of incoming light in average
- The reflection intensity is independent on the wavelength
- No energy is absorbed during reflection
- but might be absorbed during subsurface scattering

Metal

- IOR strongly depends on the wavelength
- Immediately absorbs refracted lights (i.e. no refraction)
- The reflected lights would change their color

Fresnel Reflectance

[Real-time Rendering, 3/e, A K Peters 2008]

Fresnel Reflectance

[Real-time Rendering, 3/e, A K Peters 2008]

Fresnel Reflectance

[Real-time Rendering, 3/e, A K Peters 2008]

Fresnel Reflectance

[Real-time Rendering, 3/e, A K Peters 2008]

Fresnel Reflectance

[Real-time Rendering, 3/e, A K Peters 2008]

Fresnel

for unpolarized light

$$
\mathrm{F}_{\mathrm{r}}=\frac{1}{2}\left(r_{\|}^{2}+r_{\perp}^{2}\right)
$$

Dielectric

$$
\begin{aligned}
\mathrm{r}_{\|} & =\frac{\eta_{\mathrm{t}} \cos \theta_{i}-\eta_{i} \cos \theta_{t}}{\eta_{\mathrm{t}} \cos \theta_{i}+\eta_{i} \cos \theta_{t}} \\
\mathrm{r}_{\perp} & =\frac{\eta_{\mathrm{i}} \cos \theta_{i}-\eta_{t} \cos \theta_{t}}{\eta_{\mathrm{i}} \cos \theta_{i}+\eta_{t} \cos \theta_{t}}
\end{aligned}
$$

Conductor

$$
\begin{aligned}
\mathrm{r}_{\|}^{2} & =\frac{\left(\eta^{2}+\mathrm{k}^{2}\right) \cos ^{2} \theta_{i}-2 \eta \cos \theta_{i}+1}{\left(\eta^{2}+\mathrm{k}^{2}\right) \cos ^{2} \theta_{i}+2 \eta \cos \theta_{i}+1} \\
\mathrm{r}_{\perp}^{2} & =\frac{\left(\eta^{2}+\mathrm{k}^{2}\right)-2 \eta \cos \theta_{i}+\cos ^{2} \theta_{i}}{\left(\eta^{2}+\mathrm{k}^{2}\right)+2 \eta \cos \theta_{i}+\cos ^{2} \theta_{i}}
\end{aligned}
$$

Radiometry

Radiant flux $\Phi=\frac{\mathrm{dQ}}{\mathrm{dt}}(\mathrm{J} / \mathrm{sec})$
The total amount of energy passing through a region of surface per unit time

Irradiance $E=\frac{d \Phi}{d A}$
Pre area incoming flux at a surface
Radiant Exitance or Radiosity
$M=B=\frac{d \Phi}{d A}$
the total amount Φ measured at inner and outer sphere is the same (equals to the radiant flux of the point light)

Lambert's Cosine Law

$$
E=\frac{d \Phi}{d A}
$$

$$
E_{1}=\frac{d \Phi}{d A}
$$

$$
E_{2}=\frac{d \Phi}{d A^{\prime}}=\frac{\cos \theta d \Phi}{d A}=E_{1} \cos \theta
$$

Solidangle

$\Omega=\frac{A}{r^{2}}$

- The total area on a unit sphere subtended by the object
- A set of directions
- Measured in steradians (sr)
- Often denoted as ω

Radiance

The density of photons passing near x and traveling in directions near ω

Bidirectional Reflection Distribution Function

$$
f\left(\theta_{i}, \phi_{i}, \theta_{o}, \phi_{o}\right)=f\left(\vec{\omega}_{i}, \vec{\omega}_{o}\right)
$$

BRDF Definition

BRDF Definition

spending
 income

Properties of BRDFs

- Helmholtz reciprocity
- symmetric surface reflectance

$$
f\left(\vec{\omega}_{i}, \vec{\omega}_{o}\right)=f\left(\vec{\omega}_{o}, \vec{\omega}_{i}\right)
$$

- Positivity

$$
f\left(\vec{\omega}_{i}, \vec{\omega}_{o}\right) \geq 0
$$

- Energy conservation
- Total amount of outgoing energy must be less than or equal to the incoming energy

BRDF Explorer
 from Disney Animation
 http://www.disneyanimation.com/technology/brdf.html

Isotropic vs. Anisotropic

- Isotropic BRDFs are independent of incident azimuth angle ϕ

BRDF Acquisition

[White et al, JAO 98]

MERL 100

http://www.merl.com/brdf/
"A Data-Driven Reflectance Model", Matusik et al., SIG’03

BRDF Data Fitting

[Ngan et al., 2005]

Microfacet Model

Microfacet Model

Microfacet Model

Microfacet Model
microfacet: ideal mirror

General Microfacet BRDF

The ratio of micro-surface area visible to the light, viewer

$$
\begin{aligned}
& \theta_{l}, \theta_{v} \text { : angle between } \vec{l}, \vec{v} \text { and normal } \\
& \theta_{h}: \text { angle between normal and } \vec{h} \\
& \theta_{d}: \text { difference between } \vec{l} \text { (or } \vec{v} \text {) and } \vec{h}
\end{aligned}
$$

Fresnel

- Schlick's approximation

$$
F_{\text {Schlick }}=F_{0}+\left(1-F_{0}\right)\left(1-\overline{\cos \theta_{i}}\right)^{5}
$$

- Where $F_{0}=\left(\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}\right)^{2}$
- a.k.a. reflectance at normal, normal reflectance, etc.
? What if $\eta_{2}=\eta_{1}$
- F should be zero but $F_{\text {Schlick }}=\left(1-\overline{\cos \theta_{i}}\right)^{5} \neq 0$

NDF (Normal Distribution Function)

- Half vector $\vec{h}=\frac{\vec{i}+\vec{v}}{\|\vec{l}+\vec{v}\|}$
- As for perfect mirror microfacets, we can only see those facets whose normal vector $\vec{m}=\vec{h}$

Highlights at Grazing Angles

Data Fitting of Acquired Data

Highlights at Grazing Angles

Mirror lobe

Data Fitting of Acquired Data (Cont’d)

NDF (Cont'd)

- Measures area density of microsurface with respect to microsurface normal

$$
D(\omega)=\int_{\mathcal{M}} \delta_{\omega}\left(\omega_{m}\left(p_{m}\right)\right) d p_{m}
$$

- microsurface

NDF (Cont'd)

- Measures area density of microsurface with respect to microsurface normal

NDF (Cont'd)

- Measures area density of microsurface with respect to microsurface normal

NDF (Cont'd)

- Measures area density of microsurface with respect to microsurface normal

NDF (Cont'd)

$$
\begin{aligned}
& \text { microsurface area }=\int_{\mathcal{M}} d p_{m}=\int_{\Omega} D\left(\omega_{m}\right) d \omega_{m} \\
& \text { projected microsurface area }=\int_{\Omega}\left(\omega_{m} \cdot \omega_{g}\right) D\left(\omega_{m}\right) d \omega_{m}
\end{aligned}
$$

projection ω_{g} : normal of macrosurface

Masking/Shadowing

Conservation of Projected Area

[Heitz '14]

$$
\cos \theta_{o}=\int_{\Omega} G_{1}\left(\omega_{o}, \omega_{m}\right)\left\langle\omega_{o}, \omega_{m}\right\rangle D\left(\omega_{m}\right) d \omega_{m}
$$

masking function

Conservation of Projected Area

[Heitz '14]

$$
\cos \theta_{o}=\int_{\Omega} G_{1}\left(\omega_{o}, \omega_{m}\right)\left\langle\omega_{o}, \omega_{m}\right\rangle D\left(\omega_{m}\right) d \omega_{m}
$$

masking function

BRDF Validation

- What makes it physically-based?

1. Reciprocity: $\mathrm{f}(\mathrm{l}, \mathrm{v})=\mathrm{f}(\mathrm{v}, \mathrm{l})$
2. Positivity: $\mathrm{f}(\mathrm{l}, \mathrm{v})>0$
3. Energy conservation: $\int_{\Omega} f(l, v) \cos \theta_{i} d \omega_{i} \leq 1$

What do we miss?

Multiple Surface Bounces?

References

- Physically-based Rendering. SIGGRAPH Course Notes 2011~15.
- Ngan et al., Experimental Analysis of BRDF Models. Technical Report 2005.
- Eric Heitz, Understanding the Masking-Shadowing Function. SIG’14.
- Brent Burley, Physically Based Shading at Disney. SIG'12 Course Note.
- Steve Marschner, Microfacet models for refection and refraction, Cornell University, CS 6630, Fall 2015.

