
Global Illumination I

Shih-Chin Weng
shihchin.weng@gmail.com



What is Global Illumination?





Photo by Abigail Keenan



Photo by Kaushik Panchal



The State of Rendering
Ray tracing is everywhere in VFX & animation industry!



Hyperion Renderer

http://www.disneyanimation.com/technology/innovations/hyperion


Manuka Renderer

https://www.fxguide.com/featured/manuka-weta-digitals-new-renderer/


RenderMan

https://renderman.pixar.com/view/renderman


arnold renderer

https://www.solidangle.com/


Basic Concepts



Where Does Light Come From?

direct

indirect



Global = Direct + Indirect Lighting

Direct Illumination Global Illumination



Global = Direct + Indirect Lighting

Direct Illumination Global Illumination

color bleeding



Light Path Expression

specular
diffuse

transmit

light

eye

glossy

L: light
D: diffuse
S: specular
G: glossy 
T: transmit
E: eye



Light Path Expression (Cont’d)

LDE

LDDE



Radiometry

• Irradiance 𝐸 =
𝑑𝛷

𝑑𝐴

pre area incoming flux at a surface

• Radiance 𝐿 =
𝑑2𝛷

𝑑𝜔𝑑𝐴⊥
=

𝑑2𝛷

𝑑𝜔𝑑𝐴 𝑐𝑜𝑠 𝜃

flux per solidangle per projected area

𝐿 cos 𝜃 =
𝑑2Φ

𝑑𝐴𝑑𝜔
=
𝑑𝐸

𝑑𝜔
⇒ 𝐿 cos 𝜃 𝑑𝜔 = 𝑑𝐸



BRDF Definition

𝑓 𝜔𝑖 , 𝜔𝑜 =
𝑑𝐿𝑟 𝜔𝑜

𝑑𝐸𝑖(𝜔𝑖)
=

𝑑𝐿𝑟 𝜔𝑜

𝐿𝑖 𝜔𝑖 𝑐𝑜𝑠 𝜃𝑖 𝑑𝜔𝑖

outgoing radiance

incoming irradiance

𝒔𝒑𝒆𝒏𝒅𝒊𝒏𝒈

𝒊𝒏𝒄𝒐𝒎𝒆

𝑏

Ԧ𝑡

𝑛
𝜔𝑖

𝜔𝑜
𝜃𝑖

𝜃𝑜

𝜙𝑖
𝜙𝑜



Compute 𝐿𝑟(𝜔𝑜) from BRDF (temp)

𝑓 𝜔𝑖 , 𝜔𝑜 =
𝑑𝐿𝑟 𝜔𝑜

𝑑𝐸𝑖(𝜔𝑖)
=

𝑑𝐿𝑟 𝜔𝑜

𝐿𝑖 𝜔𝑖 𝜔𝑖 ⋅ 𝑛 𝑑𝜔𝑖

𝐿𝑖 𝜔𝑖 𝑓 𝜔𝑖 , 𝜔𝑜 𝜔𝑖 ⋅ 𝑛 = 𝐿𝑖 𝜔𝑖

𝑑𝐿𝑟 𝜔𝑜

𝐿𝑖 𝜔𝑖 𝜔𝑖 ⋅ 𝑛 𝑑𝜔𝑖
𝜔𝑖 ⋅ 𝑛 =

𝑑𝐿𝑟 𝜔𝑜

𝑑𝜔𝑖

න
Ω

𝑑𝐿𝑟 𝜔𝑜

𝑑𝜔𝑖
𝑑𝜔𝑖 = 𝐿𝑟(𝜔𝑜)

reflected radiancehemisphere



Render Equation

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒 𝑥, 𝜔𝑜 +න
Ω

𝐿𝑖 𝑥, 𝜔𝑖 𝑓 𝜔𝑖 , 𝜔𝑜 𝜔𝑖 ⋅ 𝑛 𝑑𝜔𝑖

= 𝐿𝑒 𝑥, 𝜔𝑜 + 𝐿𝑟 𝑥, 𝜔𝑜

emission reflection



Render Equation

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒 𝑥, 𝜔𝑜 +න
Ω

𝐿𝑖 𝑥, 𝜔𝑖 𝑓 𝜔𝑖 , 𝜔𝑜 𝜔𝑖 ⋅ 𝑛 𝑑𝜔𝑖

= 𝐿𝑒 𝑥, 𝜔𝑜 + 𝐿𝑟 𝑥, 𝜔𝑜

emission

Oops! There is another render equation nested inside!!

reflection



Recursive Ray Tracing

shading point
[Inspired by Křivánek, ‘10]

http://cgg.mff.cuni.cz/~jaroslav/gicourse2010/


Recursive Ray Tracing

shading point

𝐿𝑜 𝑥, 𝜔𝑜

[Inspired by Křivánek, ‘10]

http://cgg.mff.cuni.cz/~jaroslav/gicourse2010/


Recursive Ray Tracing

shading point

𝐿𝑜 𝑥, 𝜔𝑜

Ω

[Inspired by Křivánek, ‘10]

http://cgg.mff.cuni.cz/~jaroslav/gicourse2010/


Recursive Ray Tracing

shading point

𝐿𝑜 𝑥, 𝜔𝑜

Ω

[Inspired by Křivánek, ‘10]

http://cgg.mff.cuni.cz/~jaroslav/gicourse2010/


Recursive Ray Tracing

shading point

𝐿𝑖 𝑥, 𝜔𝑖

[Inspired by Křivánek, ‘10]

http://cgg.mff.cuni.cz/~jaroslav/gicourse2010/


Recursive Ray Tracing

shading point

𝐿𝑖 𝑥, 𝜔𝑖 = 𝐿𝑜(𝑥
′, −𝜔𝑖)

[Inspired by Křivánek, ‘10]

http://cgg.mff.cuni.cz/~jaroslav/gicourse2010/


Recursive Ray Tracing

shading point

𝐿𝑖 𝑥, 𝜔𝑖 = 𝐿𝑜(𝑥
′, −𝜔𝑖)

[Inspired by Křivánek, ‘10]

http://cgg.mff.cuni.cz/~jaroslav/gicourse2010/


Recursive Ray Tracing

shading point

𝐿𝑖 𝑥, 𝜔𝑖 = 𝐿𝑜(𝑥
′, −𝜔𝑖)

and so on so forth…

[Inspired by Křivánek, ‘10]

http://cgg.mff.cuni.cz/~jaroslav/gicourse2010/


Primary Visibility

Rasterization

• Surface to eye

• Visibility via depth buffer

Ray Tracing

• Eye to surface

• Visibility via ray casting



Ray-Casting

• Find the nearest intersection from a ray

• Computed with different geometry representations

– Explicit
• Triangular meshes

• Bezier curves for hair/fur

– Implicit
• Volume data (voxels)

• Point cloud



Acceleration Structures for Ray-Casting



Ray-Casting Computation

for each ray in each pixel:
for each geometry primitive in the scene:

if intersect(ray, primitive):
return closest point



Ray-Casting Computation

for each ray in each pixel:
for each geometry primitive in the scene:

if intersect(ray, primitive):
return closest point

O(N) O(logN)spatial coherence



Spatial Coherence

• Geometry primitives only occupy a small portion of 
the ambient space

• Primitives can be ordered by their spatial locations

• A location in space is associated with a limited 
number of primitives



Then, how should we do …



Divide & Conquer!
Photo by Amy Treasure



Acceleration Structures

• Uniform grids

• Quadtree/Octree

• k-D tree

• BSP (Binary Space Partitioning) tree

• Bounding volume hierarchy (BVH)



Uniform Grids Quad Tree k-D Tree

Spatial Partition



Uniform Grids Quad Tree k-D Tree

Spatial Partition



Uniform Grids Quad Tree k-D Tree

Spatial Partition



Uniform Grids Quad Tree k-D Tree

Spatial Partition



Binary Space Partitioning Tree

1

1

2

4

2 4

3 5

3

5



Types of Boundary Volumes

AABB sphere k-DOP OBB convex hull

convex concave



Hierarchy Traversal



Balance = Query Performance

Imbalanced Balanced

Depth of Traversal



Balance = Query Performance

Imbalanced Balanced

Depth of Traversal

https://sites.google.com/site/raytracingcourse/Parallel Hierarchy Construction.pptx?attredirects=0
http://realtimecollisiondetection.net/


Ray-Object Intersection

http://www.realtimerendering.com/intersections.html

http://www.realtimerendering.com/intersections.html


Practical Issues

• Construction costs in space and time
– Use float for scalar data instead of double

– Pointers are costly in x64 platform
• Might point to incontiguous memory location in heap

• To save storage, try using int32 or short for indexing

– Geometry compression?
• Unit vector quantization

• Store local position in float, only use double for their transform matrix

• Parallelism and locality are key factors for parallel 
processing



Practical Issues

• Construction costs in space and time
– Use float for scalar data instead of double

– Pointers are costly in x64 platform
• Might point to incontiguous memory location in heap

• To save storage, try using int32 or short for indexing

– Geometry compression?
• Unit vector quantization

• Store local position in float, only use double for their transform matrix

• Parallelism and locality are key factors for parallel 
processing

https://sites.google.com/site/raytracingcourse/Parallel Hierarchy Construction.pptx?attredirects=0
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http:/web.cse.ohio-state.edu/~hwshen/Su01_888/deering.pdf


Memory Caching

Dogged Determination: Technology and Process at Naughty Dog Inc., Jason Gregory. SINFO XXI 2014 Keynote

https://www.youtube.com/watch?v=f8XdvIO8JxE


Cache Line

• The fixed size data block transferred between 
memory and cache

• Might take hundreds of 
clocks to move around

• False sharing

– Different threads access 
elements which reside 
in the same cache line

figure from https://software.intel.com

https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads


SOA vs. AOS

Structures of Arrays (SOA)

Array of Structures (AOS)

• Easily aligned cache boundaries
• Easier to utilize SIMD
• Chance for hardware prefetching

• Intuitively match the 
object abstraction

• Might cause cache 
alignment problems

• Hard to vectorized



SOA vs. AOS

Structures of Arrays (SOA)

Array of Structures (AOS)

• Easily aligned cache boundaries
• Easier to utilize SIMD
• Chance for hardware prefetching

• Intuitively match the 
object abstraction

• Might cause cache 
alignment problems

• Hard to vectorized

chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http:/www.aristeia.com/TalkNotes/ACCU2011_CPUCaches.pdf
http://www.randygaul.net/2014/06/25/cache-aware-components/


Object-Oriented or Data-Oriented Design?

• Abstraction is good for modeling

– But over-abstraction is harmful for performance

• Memory access pattern is crucial for parallel processing

– Structure of arrays (SOA) vs. Array of structures (AOS)

– Hot/cold splitting

• 80/20 principle

– Optimizing after profiling!!

– Don’t optimizing the insignificant parts



Object-Oriented or Data-Oriented Design?

• Abstraction is good for modeling

– But over-abstraction is harmful for performance

• Memory access pattern is crucial for parallel processing

– Structure of arrays (SOA) vs. Array of structures (AOS)

– Hot/cold splitting

• 80/20 principle

– Optimizing after profiling!!

– Don’t optimizing the insignificant parts

http://www.dataorienteddesign.com/dodmain/
https://www.youtube.com/watch?v=rX0ItVEVjHc


Out-of-Core Algorithms

• What if the data are too large to fit the main memory?

– Conventional algorithm doesn’t work!

– Reduce the times of data reading as many as possible
• Avoid rewinding all data elements

– Dice one computation task into several sub-tasks
• Need to estimate the memory consumption for each sub-task

– Apply the concept of ‘paging’
• Use memory mapped file during computation


