Global lllumination |

Shih-Chin Weng

shihchin.weng@gmail.com

What is Global lllumination?

Photo by Abigail Keenan

Ray tracing is everywhere in VFX & animation industry!

The State of Rendering

ANIMATION STUDIOS

Hyperion Renderér.f

http://www.disneyanimation.com/technology/innovations/hyperion

J B SN {
Manuka Renderer.

B

https://www.fxguide.com/featured/manuka-weta-digitals-new-renderer/

Dfeuep - PIXAR

RenderMan

https://renderman.pixar.com/view/renderman

SOLIDANGLE

arnold renderer

https://www.solidangle.com/

Basic Concepts

Where Does Light Come From?

Global = Direct + Indirect Lighting

-

Direct lllumination Global lllumination

*

Global = Direct + Indirect Lighting

Direct lllumination Global lllumination

Light Path Expression

glossy
specular
9
&y
P

diffuse

transmit

—

S o S

: Llight

: diffuse
: specular
: glossy

: transmit
: eye

Light Path Expression (Cont’d)

Radiometry

do

 |rradiance E = —
dA

pre area incoming flux at a surface
: d*o d*o

e Radiance L = =
dwdA+ dwdA cos 6

flux per solidangle per projected area

i dE i
=LCOSQ_dAda)_%:>LCOSHdw_dE!

spending

BRDF Definition income

outgoing radiance

//

@D dL,@,)
dEj(@;) L;(w;)cosb;dw;

/

incoming irradiance

f(ai' 80) =

Compute L,.(w,) from BRDF (temp)

”~ VU0 dE(Wy) L) (6 - n)d i

dL.(&,) AL (d,)
L(wlxwl e, o

(al)f(al' (‘_50)((‘)1 n) = L; (a)l)

[22 i, = 1, @,
9)

dw;

hemisphere reflected radiance

Render Equation

LG o) j bk, B (@, o) e,
Q
== Le (x; 60) = Lr(x: 5o)

\

emission reflection

Render Equation

Oops! There is another render equation nested inside!!

\

A 3
_~\

|
LGt o j B G, 5,) (@7 da,
Q
== Le (x: 50) 5 Lr(x: CT50)

a5

emission reflection

Recursive Ray Tracing

[Inspired by Krivanek, ‘10]

http://cgg.mff.cuni.cz/~jaroslav/gicourse2010/

Recursive Ray Tracing

LO (X, a_jo)

[Inspired by Krivanek, ‘10]

http://cgg.mff.cuni.cz/~jaroslav/gicourse2010/

Recursive Ray Tracing

[Inspired by Krivanek, ‘10]

http://cgg.mff.cuni.cz/~jaroslav/gicourse2010/

Recursive Ray Tracing

[Inspired by Krivanek, ‘10]

http://cgg.mff.cuni.cz/~jaroslav/gicourse2010/

Recursive Ray Tracing

L;(x, w;)

[Inspired by Krivanek, ‘10]

http://cgg.mff.cuni.cz/~jaroslav/gicourse2010/

Recursive Ray Tracing

Li(x, &;) = Lo(x', —@;)

[Inspired by Krivanek, ‘10]

http://cgg.mff.cuni.cz/~jaroslav/gicourse2010/

Recursive Ray Tracing

[Inspired by Krivanek, ‘10]

http://cgg.mff.cuni.cz/~jaroslav/gicourse2010/

Recursive Ray Tracing

&

and so on so forth...

Li(x, &;) = Lo(x', —@;)

s L i —

[Inspired by Krivanek, ‘10]

http://cgg.mff.cuni.cz/~jaroslav/gicourse2010/

Primary Visibility

Rasterization Ray Tracing

e Surface to eye * Eye to surface
* Visibility via depth buffer * Visibility via ray casting

s R

N\ W

Ray-Casting

* Find the nearest intersection from a ray

 Computed with different geometry representations
— Explicit
* Triangular meshes
 Bezier curves for hair/fur
— Implicit
* Volume data (voxels)
* Point cloud

Acceleration Structures for Ray-Casting

Ray-Casting Computation

for each ray in each pixel:
for each geometry primitive in the scene:
if intersect(ray, primitive):
return closest point

Ray-Casting Computation

for each ray in each pixel:
for each geometry primitive in the scene:
if intersect(ray, primitive):
return closest point

O (N) spatial coherence O (logN)

Spatial Coherence

 Geometry primitives only occupy a small portion of
the ambient space

* Primitives can be ordered by their spatial locations

* Alocation in space is associated with a limited
number of primitives

Then, how should we do ...

Acceleration Structures

e Uniform grids

 Quadtree/Octree

* k-D tree

e BSP (Binary Space Partitioning) tree
* Bounding volume hierarchy (BVH)

Spatial Partition

Uniform Grids

Quad Tree

k-D Tree

Spatial Partition

Uniform Grids

Quad Tree

k-D Tree

Spatial Partition

Uniform Grids

Quad Tree

k-D Tree

Spatial Partition

Uniform Grids Quad Tree k-D Tree

Binary Space Partitioning Tree

5

s

Types of Boundary Volumes

»

»

AABB sphere k-DOP OBB convex hull

»

convex concave

Balance = Query Performance

Imbalanced Balanced

Depth of Traversal

Balance = Query Performance

Imbalanced Balanced

e ,
@Q’M‘QE’TQO Karras, S\G 13

. i n'
ter E‘O
, (h‘s

https://sites.google.com/site/raytracingcourse/Parallel Hierarchy Construction.pptx?attredirects=0
http://realtimecollisiondetection.net/

Ray-Object Intersection

Real-Time
Rendering

Blog Book Information Graphics Books Intersections Portal Resources

http://www.realtimerendering.com/intersections.htm/

Object/Object Intersection

This page gives a grid of intersection routines for various popular cbjects, pointing to resources in books and en the web. For a unified static and dynamic object intersection and distance library (nen-commercial use only, though), see the TGS collis|
system. The most comprehensive books on the subject are Geometric Tools for Computer Graphics (GTCG) and Real-Time Collision Detection (RTCD); the former is all-encompassing, the latter more approachable and focused.

Guide to source abbreviations:

s 3DG - 3D Games: Real-time Rendering and Software Technology, Alan Watt and Fabie Policarpe, Addison-Wesley, 2001.
* GPG - Game Programming Gems, ed. Mark DelLoura, Charles River Media, 2000.

s GTCG - Geometric Tools for Computer Graphics, Philip 1. Schneider and David H. Eberly, Morgan Kaufmann Publishers, 2002. Good, comprehensive book on this topic.

s Gems - The Graphics Gems series. See the book's website for individual book links and cede.

* GTweb - Geometric Tools, Dave Eberly's online computer graphics related software repository. His book 3D Game Engine Design also covers these, in a readable format, as well as many other object/object intersection tests.
s IRT - An Introduction to Ray Tracing, ed. Andrew Glassner, Academic Press, 1989.

s JCGT - The Journal of Computer Graphics Technigues.

* jgt - journal of graphics tools. A partial code repository is available.

* RTCD - Real-Time Collision Detection, by Christer Ericson, Morgan Kaufmann Publishers, 2004.

* RTR - Real-Time Rendering, Third Edition, by Tomas Moller, Eric Haines, and Naty Hoffman, A.K. Peters Ltd., 2008.

* RTR2 - Real-Time Rendering, Second Edition, by Tomas Akenine-Méller and Eric Haines, A.K. Peters Ltd., 2002.

* SG - Simple Geometry library, Steve Baker's vector, matrix, and quaternion manipulation library.

* TGS - Teikitu Gaming System Collision, Andrew Aye's object/object intersection/distance and sweep/penetration software (non-commercial use only).

* TVCG - IEEE Transactions on Visualization and Computer Graphics.

Individual article references follow after the table.

Static Object Intersections

Entries are listed from eldest to newest, so often the /ast entry is the best. This table covers objects not moving; see the next section for dynamic objects.

ray plane sphere cylinder cone triangle frustum polyhedron

Méller-

Trumbore jgt 2(1): code (mirror), paper draft;
IRT p.53,102; IRT p.65,104;
H Gems p.395;

Smits;

306G p.20; (IRT p.104;
X Terdiman (optimized Wao); |Gems 1T p.247);

IRT p.91; Méller (mirror); Schroeder; GTweb;
; Gems V p.227; GTCG p.485; GTCG p.626; Gomez;

Held jgt 2(4); TGS; H GTCG p.630; n by i
SoftSurfer; T T GTCG p.507; GTweb; RTCD p.153,184; RTCD p.179; ; EaE L P;aTt'C‘DJgtf‘g(sj"
RTRZ p.618; T (o) R ; GTCG p.512 Lofstedt jot 10(2): code, paper draft Mahovsky jot 9(1); RTCD p.179; Softsurfar
RTR3 p.781 4 RTRY p.56s; RTCD p.194 Chirkov jgt 10(3): code; Williams jgt 10(1) (code); || RTR2 p.572;
RTR3 p 738’ Lagae jot 10(4): code, paper draft; Eisemann jgt 12(4) (code); RTR3 p.743
- SoftSurfer; RTRZ p.572;
RTR2 p.578; RTR3 p.742;
RTR3 p.746; Shirley 2016
Havel TVCG June 2009;

Waop JCGT 2(1)

IRT p.39,91;
_ . Gems p.388;
GE”‘S‘_CE;ED" IRT p.50,88; Held jat 2(4);
b 5G; GTweb;
GTCG p.482; 3DG p.16;
TGS; GTCG p.501;

IRT p.104;
Gems II p.247;

TGS;
RTCD p.198; (IRT p.10 GTCG p.49

http://www.realtimerendering.com/intersections.html

Practical Issues

* Construction costs in space and time
— Use float for scalar data instead of double

— Pointers are costly in x64 platform
* Might point to incontiguous memory location in heap
* To save storage, try using int32 or short for indexing

— Geometry compression?
* Unit vector quantization
» Store local position in float, only use double for their transform matrix
e Parallelism and locality are key factors for parallel
processing

Practical Issues

 Construction costs in space and time
— Use float for scalar data instead of double

Of quantization
» Store local position in float, only use double for their transform matrix
e Parallelism and locality are key factors for parallel
processing

https://sites.google.com/site/raytracingcourse/Parallel Hierarchy Construction.pptx?attredirects=0
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http:/web.cse.ohio-state.edu/~hwshen/Su01_888/deering.pdf

Memory Caching

200+ CYCLES

20+
CYCLES
CPU MAIN RAM

(large)

small)

o

) 3
CYCLES

Dogged Determination: Technology and Process at Naughty Dog Inc., Jason Gregory. SINFO XXI 2014 Keynote

https://www.youtube.com/watch?v=f8XdvIO8JxE

Cache Line

e The fixed size data block transferred between
memory and cache

:
* Might take hundreds of

clocks to move around -
[| [—
* False sharing FERREEE
— Different threads access
elements which reside EEEEEE
in the same cache line ==============

Memory

figure from https.//software.intel.com

https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads

SOA vs. AOS

Array of Structures (AOS)

Structures of Arrays (SOA)

* Easily aligned cache boundaries
e Easier to utilize SIMD
* Chance for hardware prefetching

Intuitively match the
object abstraction
Might cause cache
alignment problems
Hard to vectorized

SOA vs. AOS

Array of Structures (AOS)

. - - * Intuitively match the

object abstraction

use cache
t problems

ectorized

* Easily alig ache boundaries
e Easier to utilize SIMD
* Chance for hardware prefetching

chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http:/www.aristeia.com/TalkNotes/ACCU2011_CPUCaches.pdf
http://www.randygaul.net/2014/06/25/cache-aware-components/

Object-Oriented or Data-Oriented Design?

e Abstraction is good for modeling

— But over-abstraction is harmful for performance

 Memory access pattern is crucial for parallel processing
— Structure of arrays (SOA) vs. Array of structures (AOS)
— Hot/cold splitting
e 80/20 principle
— Optimizing after profiling!!
— Don’t optimizing the insignificant parts

Object-Oriented or Data-Oriented Design?

* Abstraction is good for modeling
— But over-abstraction is harmful for perfor

* Memory acce M essing

— Optimizing after profiling!!
— Don’t optimizing the insignificant parts

http://www.dataorienteddesign.com/dodmain/
https://www.youtube.com/watch?v=rX0ItVEVjHc

Out-of-Core Algorithms

 What if the data are too large to fit the main memory?
— Conventional algorithm doesn’t work!
— Reduce the times of data reading as many as possible
* Avoid rewinding all data elements
— Dice one computation task into several sub-tasks
* Need to estimate the memory consumption for each sub-task
— Apply the concept of ‘paging’

e Use memory mapped file during computation

