Global Illumination II

Shih-Chin Weng shihchin.weng@gmail.com

Case Study

PantaRay from NVidia & Weta

Scenario of PantaRay

Scenario of PantaRay

Case Study: PantaRay

Case Study

Hyperion from Disney Animation

Concerns of Production Renderers

- Computation bound or I/O bound?
- Challenges
 - Massive geometry data set
 - Buildings, forest, hair, fur, etc.
 - Large amount of high-resolution textures
- Goals
 - Reduce I/O costs
 - Improve memory access patterns

The Beauty of San Fransokyo

[Video courtesy of Disney Animation.]

City View of San Fransokyo

[Video courtesy of Disney Animation.]

Introduction of Hyperion in Big Hero 6

Features

- Uni-directional path tracer (w/o intermediate caches)
- Physically based rendering
- Support volumetric rendering and mesh lights, etc.
- Data complexity
 - 83,000 buildings
 - 216,000 street lights

Core Ideas To Ensure Coherence

- Sort potentially out-of-core ray batches to extract ray groups from a complex scene
 - There are 30~60M rays per batch
 - Perform scene traversal per ray batch at a time
- Sort ray hits for deferred shading w.r.t. shading context (mesh ID + face ID)
 - Hit points are grouped by mesh ID, then sorted by face ID
 - Achieve sequential texture reads with PTex

Tracing Pipeline

Tracing Pipeline

[Eisenacher et al., EGSR'13]

Render Equation

Where Does Light Come From?

Global = Direct + Indirect Lighting

Direct Illumination

Global Illumination

Global = Direct + Indirect Lighting

Direct Illumination

Global Illumination

$L(x, \vec{\omega}_o) = L_e(x, \vec{\omega}_o) + \int_{\Omega} L(x, \vec{\omega}_i) f(\vec{\omega}_i, \vec{\omega}_o)(\vec{\omega}_i \cdot \vec{n}) d\vec{\omega}_i$

Unknown!!

$\downarrow^{\downarrow} \\ L(x,\vec{\omega}_{o}) = L_{e}(x,\vec{\omega}_{o}) + \int_{\Omega} L(x,\vec{\omega}_{i})f(\vec{\omega}_{i},\vec{\omega}_{o})(\vec{\omega}_{i}\cdot\vec{n})d\vec{\omega}_{i}$

Unknown!!

$L(x, \vec{\omega}_0) = L_e(x, \vec{\omega}_0) + \int_{\Omega} L(x, \vec{\omega}_i) f(\vec{\omega}_i, \vec{\omega}_0)(\vec{\omega}_i \cdot \vec{n}) d\vec{\omega}_i$

Unknown!!

How do we solve this kind of equation??

Quadrature

- 1D example
 - Rectangle/trapezoidGaussian quadrature

- Curse of dimensionality
 - The dimension of render equation is infinity!!
 - That's why we need Monte Carlo

https://en.wikipedia.org/wiki/Numerical_integration

Monte Carlo Integration

Probability Review

Concepts

- Use random numbers to approximate integrals
- It only estimates the values of integrals
 - i.e. gives the right answer on average
- It only requires to be able to evaluate the integrand at arbitrary points
 - Nice property for multi-dimensional integrand such as radiance in render equation

Monte Carlo Sampling

- ✓ Easy to implement
- ✓ Efficient for high dimensional integrals
- x Noise (variance)
- x Low convergence rate $(1/\sqrt{n})$
 - But we don't have many other choices in high dimensional space!

Estimate π with Monte Carlo Sampling

Probability Density Function (PDF)

$$\Pr(\mathbf{x} \in [\mathbf{a}, \mathbf{b}]) = \int_{\mathbf{a}}^{\mathbf{b}} p(\mathbf{x}) d\mathbf{x}$$

The relative probability of a random variable taking on a particular value

•
$$p(x) = \frac{dPr(x)}{dx} \ge 0$$

•
$$\int_{-\infty}^{\infty} p(x) dx = 1$$
, $\Pr(x \in \mathbb{R}) = 1$

Cumulative Distribution Function (CDF)

 $P(x) = Pr\{X \le x\}$

Figure from "Global Illumination Compendium", Philip Dutré

Properties of Estimators

- Suppose Q is the unknown quantity
- Unbiased: $E[F_N] = Q$
 - Bias $\beta[F_N] = E[F_N] Q$
 - The expected value is independent of sample size N
- Consistent
 - $\lim_{N\to\infty}\beta[F_N]=0$
 - $\lim_{N \to \infty} E[F_N] = Q$

Law of Large Numbers

$$\Pr\left[\mathrm{E}(\mathbf{x}) = \lim_{\mathbf{N}\to\infty} \frac{1}{N} \sum_{i=1}^{N} x_i\right] = 1$$

$$\mathbf{E}[f(x)] \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

Law of Large Numbers

Law of Large Numbers

Insufficient Samples = High Variance = Noise

[Rendered with pbrt.v3]

Monte Carlo Estimation

estimator

t!!

$$\int f(x) \, dx = \int \frac{f(x)}{p(x)} p(x) dx = E\left[\frac{f(x)}{p(x)}\right] \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(x)}{p(x)}$$

$$\int_{\Omega} L_{i}(x,\vec{\omega}_{i})f(\vec{\omega}_{i},\vec{\omega}_{o})(\vec{\omega}_{i}\cdot\vec{n})d\vec{\omega}_{i}$$

$$\stackrel{N}{\underset{i=1}{\sim}} \frac{1}{N}\sum_{i=1}^{N} \frac{L_{i}(x,\vec{\omega}_{i})f(\vec{\omega}_{i},\vec{\omega}_{o})(\vec{\omega}_{i}\cdot\vec{n})}{p(\vec{\omega}_{i})}$$

Light Transport Algorithms

Light Transport Algorithms

- Path tracing
- Light tracing
- Bidirectional path tracing
- Photon mapping
- and many more...

Path Tracing

Light Tracing

•

Bidirectional Path Tracing

Photon Tracing

http://iliyan.com/publications/VertexMerging/comparison,

1

m

Bidirectional Path Tracing

Importance Sampling

Direct Illumination

Uniform Sampling

Importance Sampling

Importance Sampling (Cont'd)

Unknown!!

where $p(X_i) \propto f(X_i)$

 $F_{N} = \frac{1}{N} \sum \frac{f(X_{i})}{p(X_{i})},$

[Premože'10]

f(x)

Importance Sampling (Cont'd)

Unknown!!

p(x)

f(x)

[Premože'10]

Bad choice of density function would increase the variance (to infinity)!!

where $p(X_i) \propto f(X_i)$

Emission Sampling

BRDF Sampling

High Throughput Connection

Challenges

- It's hard to get the PDF of the convolution of
 - Incoming radiance $L(x, \vec{\omega}_i)$ and
 - BRDF $f(\vec{\omega}_i, \vec{\omega}_o)$
- There's an implicit visibility term within $L(x, \vec{\omega}_i)$
 - Visibility term can't be derived before tracing
 - Using machine learning to adapt sampling distribution?
- Dilemma
 - Highly specular BRDFs with point light sources

Highly Specular BRDF & Point Light

BRDF Sampling

Light Sampling

Multiple Importance Sampling

Sample Light Source

Sample BRDF

MIS with Power Heuristic

[Veach'95]

Multiple Importance Sampling (Cont'd)

$$\frac{1}{n_f} \sum_{i=1}^{n_f} \frac{f(X_i)g(X_i)w_f(X_i)}{p_f(X_i)} + \frac{1}{n_g} \sum_{j=1}^{n_g} \frac{f(Y_j)g(Y_j)w_g(Y_j)}{p_g(Y_j)}$$

- n_k is the number of samples taken from the p_k
- the weighting functions w_k take all of the different ways that a sample X_i or Y_i could have been generated

 $w_s(x) = \frac{n_s p_s(x)}{\sum_i n_i p_i(x)}$

$$w_{s}(x) = \frac{\left(n_{s}p_{s}(x)\right)^{\beta}}{\sum_{i}\left(n_{i}p_{i}(x)\right)^{\beta}}$$

Multiple Importance Sampling (Cont'd)

$$\frac{1}{n_f} \int_{-\infty}^{n_f} f(X_i)g(X_i)w_f(X_i) = 1 \int_{-\infty}^{n_g} f(Y_i)g(Y_i) y_f(Y_i) = 1$$

$$\frac{1}{n_f} \int_{-\infty}^{n_f} f(Y_i)g(Y_i)w_f(X_i) = 1 \int_{-\infty}^{n_g} f(Y_i)g(Y_i)g(Y_i) = 0$$

$$\frac{1}{n_f} \int_{-\infty}^{\infty} f(Y_i)g(Y_i)w_f(X_i) = 1 \int_{-\infty}^{n_g} f(Y_i)g(Y_i)g(Y_i)g(Y_i) = 0$$

$$\frac{1}{n_f} \int_{-\infty}^{n_f} f(Y_i)g(Y_i)g(Y_i) = 1 \int_{-\infty}^{n_g} f(Y_i)g(Y_i)g(Y_i)g(Y_i) = 0$$

$$\frac{1}{n_f} \int_{-\infty}^{n_f} f(Y_i)g(Y_i)g(Y_i)g(Y_i) = 1 \int_{-\infty}^{n_g} f(Y_i)g(Y_$$

 $w_{s}(x) = \frac{n_{s}p_{s}(x)}{\sum_{i}n_{i}p_{i}(x)}$

$$w_{s}(x) = \frac{\left(n_{s}p_{s}(x)\right)^{\beta}}{\sum_{i}\left(n_{i}p_{i}(x)\right)^{\beta}}$$