Global Illumination II

Shih-Chin Weng

shihchin.weng@gmail.com

Case Study
PantaRay from NVidia \& Weta

Scenario of PantaRay

Scenario of PantaRay

Case Study: PantaRay

Case Study
Hyperion from Disney Animation

Concerns of Production Renderers

- Computation bound or I/O bound?
- Challenges
- Massive geometry data set
- Buildings, forest, hair, fur, etc.
- Large amount of high-resolution textures
- Goals
- Reduce I/O costs
- Improve memory access patterns

The Beauty of San Fransokyo

City View of San Fransokyo

[Video courtesy of Disney Animation.]

Introduction of Hyperion in Big Hero 6

- Features
- Uni-directional path tracer (w/o intermediate caches)
- Physically based rendering
- Support volumetric rendering and mesh lights, etc.
- Data complexity
- 83,000 buildings
- 216,000 street lights

Core Ideas To Ensure Coherence

- Sort potentially out-of-core ray batches to extract ray groups from a complex scene
- There are $30^{\sim} 60 \mathrm{M}$ rays per batch
- Perform scene traversal per ray batch at a time
- Sort ray hits for deferred shading w.r.t. shading context (mesh ID + face ID)
- Hit points are grouped by mesh ID, then sorted by face ID
- Achieve sequential texture reads with PTex

Tracing Pipeline

[Eisenacher et al., EGSR'13]

Tracing Pipeline

Render Equation

Where Does Light Come From?

Global = Direct + Indirect Lighting

Direct Illumination

Global Illumination

Global = Direct + Indirect Lighting

Direct Illumination

Global Illumination

Render Equation

How do we solve this kind of equation??

Render Equation

How do we solve this kind of equation??

Quadrature

- 1D example
- Rectangle/trapezoid
- Gaussian quadrature

- Curse of dimensionality
- The dimension of render equation is infinity!!
- That's why we need Monte Carlo

Monte Carlo Integration

Probability Review

Excepted value of a random variable

$$
\mathrm{E}_{\mathrm{p}}[\mathrm{f}(\mathrm{x})]=\int \mathrm{f}(\mathrm{x}) \mathrm{p}(\mathrm{x}) \mathrm{dx}
$$

Variance

$$
\begin{gathered}
\mathrm{V}[f(x)]=\mathrm{E}\left[(f(x)-E[f(x)])^{2}\right] \\
\mathrm{V}[f(x)]=E\left[(f(x))^{2}\right]-E[f(x)]^{2}
\end{gathered}
$$

probability set function

$$
\mathrm{P}\left(\frac{E}{S}\right)
$$

random variable $X: S \rightarrow \mathbb{R}$

It's a function, NOT a variable!!

Concepts

- Use random numbers to approximate integrals
- It only estimates the values of integrals
- i.e. gives the right answer on average
- It only requires to be able to evaluate the integrand at arbitrary points
- Nice property for multi-dimensional integrand such as radiance in render equation

Monte Carlo Sampling

\checkmark Easy to implement
\checkmark Efficient for high dimensional integrals
x Noise (variance)
x Low convergence rate $(1 / \sqrt{n})$

- But we don't have many other choices in high dimensional space!

Estimate π with Monte Carlo Sampling

$$
P(\text { PointsInCircle })=\frac{\pi r^{2}}{4 r^{2}} \Rightarrow \pi=4 P
$$

Probability Density Function (PDF)

$$
\operatorname{Pr}(\mathrm{x} \in[\mathrm{a}, \mathrm{~b}])=\int_{\mathrm{a}}^{b} p(x) d x
$$

The relative probability of a random variable taking on a particular value

$$
\begin{aligned}
& \text { - } p(x)=\frac{d \operatorname{Pr}(x)}{d x} \geq 0 \\
& \text { - } \int_{-\infty}^{\infty} p(x) d x=1, \operatorname{Pr}(x \in \mathbb{R})=1
\end{aligned}
$$

Cumulative Distribution Function (CDF)

$$
P(x)=\operatorname{Pr}\{X \leq x\}
$$

Figure from "Global Illumination Compendium", Philip Dutré

Properties of Estimators

- Suppose Q is the unknown quantity
- Unbiased: $\mathrm{E}\left[F_{N}\right]=Q$
$-\operatorname{Bias} \beta\left[\mathrm{F}_{\mathrm{N}}\right]=\mathrm{E}\left[F_{N}\right]-Q$
- The expected value is independent of sample size N
- Consistent
- $\lim _{N \rightarrow \infty} \beta\left[F_{N}\right]=0$
- $\lim _{N \rightarrow \infty} E\left[F_{N}\right]=Q$

Law of Large Numbers

$$
\begin{gathered}
\operatorname{Pr}\left[\mathrm{E}(\mathrm{x})=\lim _{\mathrm{N} \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} x_{i}\right]=1 \\
\mathrm{E}[f(x)] \approx \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
\end{gathered}
$$

Law of Large Numbers

Law of Large Numbers

Insufficient Samples = High Variance = Noise

[Rendered with pbrt.v3]

Monte Carlo Estimation

$$
\int f(x) d x=\int \frac{f(x)}{p(x)} p(x) d x=E\left[\frac{f(x)}{p(x)}\right] \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(x)}{p(x)}
$$

$$
\begin{aligned}
& \int_{\Omega} L_{i}\left(x, \vec{\omega}_{i}\right) f\left(\vec{\omega}_{i}, \vec{\omega}_{o}\right)\left(\vec{\omega}_{i} \cdot \vec{n}\right) d \vec{\omega}_{i} \\
& \frac{1}{N} \sum_{i=1}^{N} \frac{L_{i}\left(x, \vec{\omega}_{i}\right) f\left(\vec{\omega}_{i}, \vec{\omega}_{o}\right)\left(\vec{\omega}_{i} \cdot \vec{n}\right)}{p\left(\vec{\omega}_{i}\right)}
\end{aligned}
$$

Light Transport Algorithms

Light Transport Algorithms

- Path tracing
- Light tracing
- Bidirectional path tracing
- Photon mapping
- and many more...

Path Tracing

Light Tracing

Bidirectional Path Tracing

Photon Tracing

Photon Tracing

Path Tracing
Progressive Photon Mapping

Importance Sampling

Direct Illumination

$$
\begin{aligned}
& L_{r}\left(x, \vec{\omega}_{o}\right)=\int_{\Omega} L\left(x, \vec{\omega}_{i}\right) f\left(\vec{\omega}_{i}, \vec{\omega}_{o}\right)\left(\vec{\omega}_{i} \cdot \vec{n}\right) d \vec{\omega}_{i} \\
& \frac{1}{N} \sum_{i=1}^{N} \frac{L_{i}\left(x, \vec{\omega}_{i}\right) f\left(\vec{\omega}_{i}, \vec{\omega}_{o}\right)\left(\vec{\omega}_{i} \cdot \vec{n}\right)}{p\left(\vec{\omega}_{i}\right)} \\
& \begin{array}{l}
\text { 1. } p\left(\vec{\omega}_{i}\right) \propto L_{i}\left(x, \vec{\omega}_{i}\right) f\left(\vec{\omega}_{i}, \vec{\omega}_{o}\right)\left(\vec{\omega}_{i} \cdot \vec{n}\right) ? \\
\text { 2. } p\left(\vec{\omega}_{i} i\right) \propto L_{i}\left(x, \omega_{0}\right) ? \\
\text { 3. } p\left(\vec{\omega}_{i}\right) \propto f\left(\vec{\omega}_{i}, \vec{\omega}_{o}\right)\left(\vec{\omega}_{i} \cdot \vec{n}\right) ?
\end{array}
\end{aligned}
$$

Uniform Sampling

Importance Sampling

Importance Sampling (Cont'd)
Unknown!!

$$
\mathrm{F}_{\mathrm{N}}=\frac{1}{\mathrm{~N}} \sum \frac{f\left(X_{i}\right)}{p\left(X_{i}\right)}
$$

where $p\left(X_{i}\right) \propto f\left(X_{i}\right)$

Importance Sampling (Cont’d)

Unknown!!

$$
\mathrm{F}_{\mathrm{N}}=\frac{1}{\mathrm{~N}} \sum \frac{f\left(X_{i}\right)}{p\left(X_{i}\right)},
$$

Emission Sampling

BRDF Sampling

High Throughput Connection

Challenges

- It's hard to get the PDF of the convolution of
- Incoming radiance $L\left(x, \vec{\omega}_{i}\right)$ and
- BRDF $f\left(\vec{\omega}_{i}, \vec{\omega}_{o}\right)$
- There's an implicit visibility term within $L\left(x, \vec{\omega}_{i}\right)$
- Visibility term can't be derived before tracing
- Using machine learning to adapt sampling distribution?
- Dilemma
- Highly specular BRDFs with point light sources

Highly Specular BRDF \& Point Light

BRDF Sampling

Light Sampling

Multiple Importance Sampling

Multiple Importance Sampling (Cont'd)

$$
\frac{1}{n_{f}} \sum_{i=1}^{n_{f}} \frac{f\left(X_{i}\right) g\left(X_{i}\right) w_{f}\left(X_{i}\right)}{p_{f}\left(X_{i}\right)}+\frac{1}{n_{g}} \sum_{j=1}^{n_{g}} \frac{f\left(Y_{j}\right) g\left(Y_{j}\right) w_{g}\left(Y_{j}\right)}{p_{g}\left(Y_{j}\right)}
$$

- n_{k} is the number of samples taken from the p_{k}
- the weighting functions w_{k} take all of the different ways that a sample X_{i} or Y_{i} could have been generated

$$
\mathrm{w}_{\mathrm{s}}(\mathrm{x})=\frac{\mathrm{n}_{\mathrm{s}} \mathrm{p}_{\mathrm{s}}(\mathrm{x})}{\sum_{i} n_{i} p_{i}(x)} \quad \mathrm{w}_{\mathrm{s}}(\mathrm{x})=\frac{\left(\mathrm{n}_{\mathrm{s}} \mathrm{p}_{\mathrm{s}}(\mathrm{x})\right)^{\beta}}{\sum_{i}\left(n_{i} p_{i}(x)\right)^{\beta}}
$$

Multiple Importance Sampling (Cont'd)

$$
\mathrm{w}_{\mathrm{s}}(\mathrm{x})=\frac{\mathrm{n}_{\mathrm{s}} \mathrm{p}_{\mathrm{s}}(\mathrm{x})}{\sum_{i} n_{i} p_{i}(x)}
$$

$$
\mathrm{w}_{\mathrm{s}}(\mathrm{x})=\frac{\left(\mathrm{n}_{\mathrm{s}} \mathrm{p}_{\mathrm{s}}(\mathrm{x})\right)^{\beta}}{\sum_{i}\left(n_{i} p_{i}(x)\right)^{\beta}}
$$

